Binomial tests
 Chi square tests
 P-values
 Confidence Intervals Null Hypothesis testing

Biostatistics Course 2023
Lecture 2
Tuesday, 25 July 2023
1:00pm - 3:00pm

Example 1: Human Sex Ratio

year	male	female
1629	5218	4683
1630	4858	4457
1631	4422	4102
1632	4994	4590
1633	5158	4839
1634	5035	4820
1635	5106	4928
1636	4917	4605
1637	4703	4457
	\vdots	

Arbuthnott J (1711). An Argument for Divine Providence, taken from the Constant Regularity observed in the Births of both Sexes.

Data to analyze

Table: Data 1

Type of analysis

Which analysis?
V Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

- XY analyses

Column analyses

- Grouped analyses

Contingency table analyses

- Survival analyses
- Parts of whole analyses

Fraction of Total
Compare of served distribution with ex...

- Multiple varia analyses

Nested analy
Generate curve
Simulate data
Recently used

Analyze which data sets?

Select All

This analysis expects that each value in the data table is an actual number of events or items, and is not normalized in any way.

Data set to analyze

A: year 1634

Enter expected values as

Actual numbers of objects or events

Expected distribution

Row	Outcome	Observed \%	Expected \%
1	boys	51.09	50
2	girls	48.91	50

Output

Method to calculate CI: Wilson/Brown (recommended)
Show this many significant digits (for everything except P values): $4 \hat{v}$
P value style: GP: 0.1234 (ns), $0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), 0.000 \ldots$... $N=6$

Q Search	－sex＿ratio．pzfx－Edited							
	O vs．E			－				
v Data Tables＞＞								
\＃Data 1								
＋New Data Table．．．	》 1	Table analyzed	Data 1					
（i）Project info 1	2	Column analyzed	Column A					
\oplus New Info．．．	3							
จ Results 》	》 4	Binomial test						
E O vs．E of Data 1	5	P （one－tailed）	0.0156					
\oplus New Analysis．．．	》 6	P （two－tailed）	0.0311					
区 Data 1	7	P value summary	＊					
\oplus New Graph．．．	8	Is discrepancy significant（ $\mathrm{P}<0.05$ ）？	Yes					
	＞ 9							
	10	Outcome	Expected \＃	Observed \＃	Expected \％	Observed \％	95\％CI of Observed \％	
	11	boys	4928	5035	50.00	51.09	50.10 to 52.08	
	12	girls	4928	4820	50.00	48.91	47.92 to 49.90	
	13	TOTAL	9855	9855	100.0	100.00		
Family＞	》 14							
囲 Data 1	15							
E 0 vs．E	16							
	17							
	18							
	19							
	20							
	21							
	22							
	23							
	24							
	25							
	26							
	27							
$\square 4$－	［ ${ }^{\text {吅 }}$	囲（1）	of Data 1	－	OV Row	Column A	Q	

Births in London, 1629-1710

Example 2: A biased coin

Biased coins are modeled using a Bernoulli distribution, which describes probabilities for a binary variable

Mike Izbicki (Claremont McKenna College) https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html

The number of heads after 100 flips of the biased coin will resemble the underlying probabilities, but will not match exactly
resuts from 100 simulated flips

expected: 60 heads, 40 tails
observed: $\underline{62 \text { heads, }} \underline{38 \text { tails }}$
How much deviation from the expected values do we expect?

There is substantial variation across replicates. This is to be expected.

Results from 1000 simulations, 100 flips per simulation

The variation in the number of heads from replicate to replicate is described by a binomial distribution

Results from 1000 simulations, 100 flips per simulation

Can we determine whether or not a coin is biased by flipping it 100 times?

Suppose we flip a coin 100 times and observe 62 heads (and 38 tails).

Null hypothesis: heads and tails are equally likely, i.e.

$$
p(\text { heads })=50 \%
$$

Alternative hypothesis: heads and tails are not equally likely, i.e.

$$
p(\text { heads }) \neq 50 \%
$$

Our observation (62 heads) may or may not allow us to reject the null hypothesis and thus accept the alternative hypothesis.

No amount of data, however, can cause us to accept the null hypothesis.

Data to analyze

Table: Data 1

Type of analysis

Which analysis?
Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

- XY analyses
- Column analyses
- Grouped analyses
- Contingency table analyses
-Survival analyses
- Parts of whole analyses

Fraction of Total
Compare observed distribution with ex...

- Multiple able analyses

Nested a
Generatecu ve

- Simulate data
- Recently used

Analyze which data sets?
(A:flips

When you analyze tables or graphs with more than one data set, use this space to select which data set(s) to analyze.

This analysis expects that each value in the data table is an actual number of events or items, and is not normalized in any way.

Data set to analyze

A: flips

Enter expected values as

Actual numbers of objects or events

Expected distribution

Row	Outcome	Observed \%	Expected \%
1	heads	62	50
2	tails	38	5

Output

Method to calculate CI: Wilson/Brown (recommended)
Show this many significant digits (for everything except P values): $4 \hat{v}$
P value style: GP: $0.1234(\mathrm{~ns}), 0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), 0.000 \ldots$... $N=6$

－${ }^{\circ}$	－flips．pzfx－Edited							
Q－Search	O vs．E							
จ Data Tables＞＞								
Data 1 New Data Table．．． Info （i）Project info 1 \oplus New Info．．． Results								
	》 1	Table analyzed	Data 1					
	2	Column analyzed	Column A					
	3							
	》 4	Binomial test						
E O vs．E of Data 1	5	P（one－tailed）	0.0105					
\oplus New Analysis．．． Graphs Data 1 \oplus New Graph．．． －Layouts \oplus New Layout．．．	》 6	P （two－tailed）	0.0210					
	7	P value summary	＊					
	8	Is discrepancy significant（ $\mathrm{P}<0.05$ ）？	Yes					
	＂ 9							
	10	Outcome	Expected \＃	Observed \＃	Expected \％	Observed \％	95\％Cl of Observed \％	
	11	heads	50.00	62	50.00	62.00	52.21 to 70.90	
	12	tails	50.00	38	50.00	38.00	29.10 to 47.79	
Family＞	＞ 13	TOTAL	100.0	100.0	100.0	100.00		
囲 Data 1	14							
EOvs．E								
	15							
	16							
	17							
	18							
	19							
	20							
	21							
	22							
	23							
	24							
	25							
$\square 4$	［9）㗊	囲（1）	of Data 1		O－Row	Column A	$Q-$	＋

We reject the null hypothesis of the data fall too far away from the bulk of the distribution

If the null hypothesis is true, data should fall within the green region 95% of the time, and within the red "reject" region 5% of the time.
null hypothesis

Our assumed dataset (62 heads) lies outside the central 95\%.
We can therefore reject the null hypothesis with 95% confidence.

P-values quantify the probability of data being as or more extreme than the data in hand were the null hypothesis true.

The P-value threshold of 0.05 comes from adopting a confidence threshold of 95%.

We find that $\mathbf{p}=\mathbf{0 . 0 2 1 0}$ for the two-sided test.
We therefore say that our result is "statistically significant"

P-values quantify the probability of data being as or more extreme than the data in hand were the null hypothesis true.

A one-sided hypothesis test only considers one side of the distribution.
null hypothesis

We find that $\mathbf{p}=\mathbf{0 . 0 1 0 5}$ for the one-sided test.
In general, two-sided tests are more conservative than one-sided tests.
Unless you have good reason to do otherwise, use two-sided tests.

We conclude that p (heads) lies within [52.5\%, 71.5%] with 95% confidence.
We can reject the null hypothesis because it lies outside this confidence interval.

- "Statistically significant" does not actually mean "significant" in the normal sense. At best, it means "detectable".
- P-values do not say how big an observed effect is.
- P-values do not say how important that observed effect is.
- P-values calculations rely on assumptions, and violation of any of those assumptions can render P -values meaningless.
- Perhaps most severe is the fact that P-values do not actually quantify you how likely or unlikely your null hypothesis is!

Why are Confidence Intervals better than P-values?

- Like a P-value, a CI communicates statistical significance (i.e. detectability).
- A Cl also communicates effect size, as well as the uncertainty in that effect size.
- A $95 \% \mathrm{Cl}$ does not actually mean that the true value of a parameter lies within that interval with 95\% probability. Still, this (extremely common) misinterpretation is largely benign compared to the misinterpretation of P -values.
- However, P-values are more commonly reported than confidence intervals.

The perils of null hypothesis testing

Summary of null hypothesis testing

Step 1: Specify a null hypothesis.

Step 2: Specify a confidence level (usually 95\%)

Step 3: Identify the appropriate statistical test

Then:

evaluate on data

Result: P-value summarizing how unlikely the data is compared to null hypothesis expectations.

Perhaps most problematic is how easily P-values are misinterpreted.

Roughly speaking, P-values quantify how likely our data would be if the null hypothesis were true.

$$
p \text { (data|null hypothesis) }
$$

P-values do not quantify the probability of the null hypothesis given our data. Unfortunately, this is the quantity that we actually care about.

$$
p(\text { null hypothesis } \mid \text { data })
$$

By convention $\mathrm{P}<0.05$, then one rejects null hypothesis, supposedly because p (null hypothesis \mid data) is small.

For this to make sense, one has to accept the base rate fallacy, i.e.,

$$
p(\text { data } \mid \text { null hypothesis }) \approx p(\text { null hypothesis } \mid \text { data })
$$

Whether or not this is true in a specific case depends on the prior odds,

$$
p \text { (null hypothesis), }
$$

which Frequentist statistics refuses to consider.

Frequentist statistics (a.k.a. classical statistics) focuses on likelihood:

$$
p \text { (data| hypothesis). }
$$

Iron Law of Frequentist Statistics:

Never compute the probability of a hypothesis.

Bayesian statistics focuses on computing posterior probabilities:

$$
p \text { (hypothesis | data). }
$$

Example 3: Supernova detection machine

DID THE SUN JUST EXPLODE?
 (ITS NGHT, SO WERE NOT SURE.)

BAYESIAN STATISTICIAN:

Bayes's theorem (from yesterday):

FREQUENTIST STATISTCIAN: BAYESIAN STATSTICIAN:

https://xkcd.com/1132/
$\frac{p\left(\text { nova }^{+} \mid \text {detector }^{+}\right)}{p\left(\text { nova }^{-} \mid \text {detector }^{+}\right)}=\frac{p\left(\text { detector }^{+} \mid \text {nova }^{+}\right)}{p\left(\text { detector }^{+} \mid \text {nova }^{-}\right)} \times \frac{p\left(\text { nova }^{+}\right)}{p\left(\text { nova }^{-}\right)}$

$$
\left[\frac{35 / 36}{1 / 36}=35\right]
$$

If our prior belief is that a supernova is very unlikely, i.e.

$$
\frac{p\left(\text { nova }^{+}\right)}{p\left(\text { nova }^{-}\right)} \ll \frac{1}{35}
$$

then we still shouldn't believe the sun has gone nova.

Even though, with a null hypothesis of nova ${ }^{-}$,

$$
P \text { value }=p\left(\text { detector }^{+} \mid \text {nova }^{-}\right)=\frac{1}{36}=0.028<0.05
$$

Example 4: Mendel's Peas

Chi square test (known proportions)

Example: Mendel's peas

	observed	expected proportion	expected counts
Round \& yellow	315	$9 / 16$	312.75
Round \& green	108	$3 / 16$	104.25
Angular \& yellow	101	$3 / 16$	104.25
Angular \& green	32	$1 / 16$	34.75
Total	556	$16 / 16$	556.00

Null Hypothesis:

observations in $K=4$ different categories occur in the expected proportions

> Data: number of observations in each category
> Statistic: $\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Null distribution: Chi square distribution with $K-1=3$ degrees of freedom (DOF)

This analysis expects that each value in the data table is an actual number of events or items, and is not normalized in any way.

Data set to analyze

A: observed

Enter expected values as

Actual numbers of objects or events

 o rows, perform
 al test (recommended
 square test for goodness of fit

Expected distribution

Row	Outcome	Observed \%	Expected \%
1	Round \& yellow!	56.65	56.25
2	Round \& green	19.42	18.75
3	Angular \& yellow!	18.17	18.75
4	Angular \& green!	5.76	6.25

enter manually

Output

Method to calculate CI: Wilson/Brown (recommended) $\hat{\imath}$
Show this many significant digits (for everything except P values): $4 \hat{v}$
P value style: GP: 0.1234 (ns), $0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), 0.000 \ldots$... $N=6 \hat{\imath}$

Example 4: Human sex ratio in London over time

Is it possible that the boy/girl ratio changes from year to year?

	sex	
	male	female
1629	5218	4683
1630	4858	4457
$\frac{\downarrow}{\mathbb{J}}$	1631	4422
1632	4994	4590
1634	5035	4820
1635	5106	4928
1636	4917	4605
1637	4703	4457
1638	5359	4952

Null Hypothesis:

Two multi-category variables A and B are independent, i.e., $p(A, B)=p(A) \cdot p(B)$

Statistic:

$\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Null distribution:
Chi square distribution with $\mathrm{DOF}=n m-m-n+1$ where
$m=$ number of possible values for A
$n=$ number of possible values or B

Data to analyze

Table: arbuthnot

Type of analysis
Which analysis?
V Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

- XY analyses
- Column analyses
- Grouped analyses
v Contingency table analyses
Chi-sc are (and Fisher's exact) test
Row m s with SD or SEM
Fractic -otal
- Survival ana yses
- Parts of whole analyses
- Multiple variable analyses
- Nested analyses
- Generate curve
- Simulate data
- Recently used

Main Calculations
 Options

Effect sizes to report

Relative RiskUsed for prospective and experimental studiesDifference hetween nronortions (attributable risk) and NNT
Used for prospective and experimental studiesOdds ratio
Used for retrospective case-control studiesSensitivity, specificity and predictive values
Used for diagnostic tests

Method to compute the \mathbf{P} value

Fisher's exact testYates' continuity corrected chi-square test

Chi-square test

i-square test for trend
or without the Yates' correction). The chi-square and z tests are equivalent.

