Correlation Power analysis Analysis of variance (ANOVA) Multiple hypothesis testing

Biostatistics Course 2023 Lecture 4 Thursday, 27 July 2023 1:00pm - 3:00pm

Correlation

sensitivity	fatty_acid
250	17.9
220	18.3
145	18.3
115	18.4
230	18.4
200	20.2
330	20.3
400	21.8
370	21.9
260	22.1
270	23.1
530	24.2
375	24

Borkman et al. (1993) wanted to understand why insulin sensitivity varies so much among individuals. They hypothesized that the lipid composition of the cell membranes of skeletal muscle affects the sensitivity of the muscle for insulin.

They determined the insulin sensitivity of N = 13healthy men by infusing insulin at a standard rate (adjusting for size differences) and quantifying how much glucose they needed to infuse to maintain a constant a blood glucose level...

They also took a small muscle biopsy from each subject and measured its fatty acid composition. We'll focus on the fraction of of polyunsaturated fatty acids that have between 20 and 22 carbon atoms ("fatty_acid").

Correlation is used to describe relationships between real-numbered variables

- a measure of relatedness of two variables, X and Y
- independent of measurement units
- ranges between -1 and 1

summary statistics

	pearson
N	13
r	0.77
95% CI	[0.38, 0.93]
r ²	0.593
P-val	0.00207701

The formula for variance is

$$\widehat{\operatorname{var}}(x) = \sigma_x^2 = \frac{1}{N-1} \sum_i (x_i - \hat{\mu}_x)^2$$

Covariance is estimated in a manner similar to variance

$$\widehat{\text{cov}}(x, y) = \frac{1}{N-1} \sum_{i} (x_i - \hat{\mu}_x)(y_i - \hat{\mu}_y)$$

The corresponding "correlation coefficient" is

$$r = \frac{\widehat{\operatorname{cov}}(x, y)}{\widehat{\sigma}_x \, \widehat{\sigma}_y}$$

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

This is what the correlation coefficient looks like

Pearson's *r* ranges from -1 to 1.

r = 0 implies independence or no relationship, i.e. $p(x, y) = p(x) \cdot p(y)$.

 $r = \pm 1$ when the two variables share a deterministic linear relationship.

r close to 1 implies nearly perfect positive dependence

r close to -1 implies nearly perfect negative dependence

Adding a constant to all x or all y, or a multiplicative rescaling of all x or all y, do not change r.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

This is what the correlation coefficient looks like

In the deterministic case, *r* is unaffected by the magnitude of the slope relating two variables, while the sign of *r* is equal to the sign of the slope.

Sometimes r = 0 when two variables have a non-linear relationship. Note that the correlation coefficient only captures **linear relationships** between two variables.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Cor[x,y] = -0.01

The <u>coefficient of determination</u> is simply r^2 , which is also often written as R^2 .

 r^2 is always between 0 and 1 (inclusive)

Remember that $r^2 \leq |r|$, so beware of people reporting *r* instead of r^2 to make a correlation seem stronger.

 r^2 is commonly interpreted as the <u>fraction of variance</u> in y explained by x (or the other way around). Null hypothesis is "no correlation between the variables"

 $H_0: \rho = 0$

Alternative hypothesis is "there is a relationship between the variables"

 $H_a: \rho \neq 0$ (two-sided), or $H_a: \rho < 0$ (one-sided less, or) $H_a: \rho > 0$ (one-sided greater)

Test statistic is t-statistic that has a t_{n-2} under the null hypothesis

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Null hypothesis is "no correlation between the variables"

$$H_0: \rho = 0$$

Alternative hypothesis is "there is a relationship between the variables"

$H_a: \rho \neq 0$	(two-sided), or
$H_a: \rho < 0$	(one-sided less, or)
$H_a: \rho > 0$	(one-sided greater)

Lots of different-looking datasets will have the same value for r.

"Anscombe's quartet": r = 0.816 for all 4 datasets

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21.

Interpreting the correlation coefficient *r*, and especially the associated P-value, requires multiple assumptions:

- Each data point (x, y) is independently sampled from a 2D Gaussian distribution.
- In particular, *x* and *y* each follow a 1D Gaussian distribution
- All covariation between x and y is **linear**, with perfect concordance disrupted only by Gaussian noise.

There are usually many explanations for why two variables might correlate

Possible reasons for a correlation between lipid levels and insulin sensitivity:

- The lipid content of membranes affects insulin sensitivity
- The insulin sensitivity affects membrane lipid content
- Both insulin sensitivity and lipid content are under the control of some third factor, such as a hormone.
- Lipid content, insulin sensitivity, and other factors are all part of a complex molecular/biochemical/physiological network, perhaps with positive and/or negative feedback components. The correlation observed is just a peak at a much more complex set of interdependent relationships.
- Membrane lipid content and insulin sensitivity don't actually correlate at all; the result is just a coincidence.

Correlation is NOT causation!!!

XY

Colun

Group

Survival

Nested

EXISTING FILE

Open a File

LabArchives

Clone a Graph

Graph Portfolio

Continger cy

Parts of Whole

Multiple variables

GraphPad

NEW TABLE & GRAPH

Welcome to GraphPad Prism

XY tables: Each point is defined by an X and Y coordinate

Data table:

O Enter or import data into a new table

Start with sample data to follow a tutorial

Options:

- X: ONUmbers
 - Numbers with error values to plot horizontal error bars
 - Dates

Elapsed times

- Y: Enter and plot a single Y value for each point
 - replicate values in side-by-side subcolumns ter 3

nter and plot error values already calculated elsewhere

Prism Tips

Cre

? Learn more

		2282	correlation.pzf	x		
Q~ Search		Table format:		Х	Group A	Group B
▼ Data Tables	>>		XY	sensitivity	fatty_acids	Title
🛄 Data 1			\odot	Х	Y	Y
+ New Data Table		1	Title	250	17.9	
▼ Info	>>	2	Title	220	18.3	
(i) Project info 1		3	Title	145	18.3	
Results	>>	4	Title	115	18.4	
New Analysis		5	Title	230	18.4	
▼ G	>>	6	Title	200	20.2	
A ata 1		7	Title	200	20.2	
Aww Graph		/		330	20.3	
Family	>>	8	Title	400	21.8	
🛄 Data 1		9	Title	370	21.9	
🗠 Data 1		10	Title	260	22.1	
		11	Title	270	23.1	
		12	Title	530	24.2	
		13	Title	375	24.4	
		14	Title			
		15	Title			
		16	Title			
		_				

ta to analyze	
able: Data 1	
be of analysis	
/hich analysis?	Analyze which data sets?
 Transform, Normalize Transform Transform concentrations (X) 	A:fatty_acids
Normalize Prune rows Remove baseline and column math Transpose X and Y Fraction of Total XY analyses Nonlinear regression (curve fit)	When you analyze tables or graphs with
Linear regression Fit spline/LOWESS Smooth, differentiate or integrate curve Area under curve Deming (Model II) linear regression Row means with SD or SEM	more than one data set, use this space to select which data set(s) to analyze.
 Correlation Interpolate a standard curve Column analyses Grouped analyses Contingency table analyses 	
Survival analyses	Select All Deselect All
	Oanad

compute correlation between which pairs of columns?	
Ocompute r for every pair of Y data sets (Correlation mat	atrix)
Compute r for X vs. every Y data set:	
X: sensitivity	\$
Ocompute r between two selected data sets:	
X: sensitivity	\$
A: fatty_acids	\$
ssume data are sampled from Gaussian distributions?	
• Yes. Compute Pearson correlation coefficients	
No. Compute nonparametric Spearman correlation	
Intions	
Output	
Show this many significant digits (for everything except P	values): 4
P Value Style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**),	○ N= 6
aphing	
Create a heatmap of the correlation matrix	
Make these choices the default for future analyses	
Make these choices the default for future analyses	
? Cane	

• • •	225	corre	elation.pzfx — Edited		
Q~ Search		Correlation		A	В
 Data Tables Data 1 New Data Table 	>>			sensitivity vs. fatty_acids	Title
Inio Project info 1	77			Y	Y
(+) New Info		1	Pearson r		
▼ Results	>>	2	r	0.7700	
Correlation of Data 1		3	95% confidence interval	0.3804 to 0.9275	
① New Analysis		4	R squared	0.5929	
▼ Graphs	>>	5			
	-	6	P value		
Family	>>	7	P (two-tailed)	0.0021	
		8	P value summary	**	
		9	Significant? (alpha = 0.05)	Yes	
		10			
		11	Number of XY Pairs	13	
		12			
		13			
		1/			

Spearman's rank correlation is a non-parametric measure of dependence

Spearman's ρ is just Pearson's *r* computed on the ranks of the *x* and *y* values which is a robust measure of correlation.

X	У
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

x rank	y rank
1.0	6.0
2.5	4.0
2.5	2.0
4.5	1.0
4.5	5.0
6.0	3.0
7.0	9.0
8.0	12.0
9.0	10.0
10.0	7.0
11.0	8.0
12.0	13.0
13.0	11.0

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

compute correlation	n between which pairs of columns?
Compute r for ev	very pair of Y data sets (Correlation matrix)
Compute r for X	vs. every Y data set:
X: sensitivity	\$
O Compute r betw	een two selected data sets:
X: sensitivity	\$
A: fatty_acids	\$
Assume data are sa	mpled from Gaussian distributions?
Yes. Compute P	earson correlation coefficients
No. Compute no	onparametric Spearman correlation
Paue: One-ta Confidence interval	iled OTwo-tailed I: 95%
No. Compute no Paue: One-ta Confidence interval Dutput Show this many sig	nparametric Spearman correlation iled O Two-tailed I: 95% O nificant digits (for everything except P values): 4 C
No. Compute no Paue: One-ta Confidence interval Dutput Show this many sig P Value Style: GP	iled Two-tailed iled Two-tailed iled 95% iled 0 inificant digits (for everything except P values): i 0.1234 (ns), 0.0332 (*), 0.0021 (**), i 0.1234 (ns), 0.0332 (*), 0.0021 (**),
Paue: One-ta Confidence interval Output Show this many sig P Value Style: GP	onparametric Spearman correlation iled Two-tailed 95% 95% nificant digits (for everything except P values): 4 2 : 0.1234 (ns), 0.0332 (*), 0.0021 (**), 8
No. Compute no P a ue: One-ta Confidence interval Dutput Show this many sig P Value Style: GP Graphing ✓ Create a heatma	iled Two-tailed iied Two-tailed i: 95% 95% Image: Second
No. Compute no P aue: One-ta Confidence interval Dutput Show this many sig P Value Style: GP Graphing ✓ Create a heatman Make these choice	inparametric Spearman correlation iled Two-tailed i: 95% iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
No. Compute no No. Compute no Paue: One-ta Confidence interval Output Show this many sig P Value Style: GP Graphing Create a heatman Make these choice	inparametric Spearman correlation iled \bigcirc Two-tailed 1: 95% \bigcirc nificant digits (for everything except P values): 4 \bigcirc 2: 0.1234 (ns), 0.0332 (*), 0.0021 (**), \bigcirc N= 6 \bigcirc ap of the correlation matrix es the default for future analyses

Power analysis

power:

The probability of getting a statistically significant result if the null hypothesis actually is actually false.

power analysis:

The process of assigning and/or computing four quantities (sometimes more) that describe one's experiment:

- 1. The sample size N
- 2. The false positive probability α (confidence = 1α)
- 3. The false negative probability β (power = 1β)
- 4. The anticipated effect size

Motulsky, Ch. 20

- 1. Confidence level: $1 \alpha = 95 \%$
- 2. Number of birth records: N = 19500
- 3. Hypothesized effect size: |p(boy) p(girl)| = 2%

The key parameter is q = p(boy), so we use $q_{null} = 50 \%$, $q_{alt} = 51 \%$

4. We compute a statistical power of: $1 - \beta = 80 \%$

False Negative Probability: $\beta = 0.20$ (or 80% power)

There are four relevant parameters: N, α , β , and effect size.

Power analysis involves <u>assuming values for any three parameters</u> and <u>computing the value of the forth</u>

"Controlling the false positive rate at $\alpha = 5~\%$, the statistical power at $1 - \beta = 80~\%$, and assuming an effect size of 2~%, our study will require using N = 19500 birth records."

"Using N=19500 birth records, controlling the false positive rate at $\alpha=5~\%$, and assuming a $2~\%\,$ effect size, our study will have $1-\beta=80~\%\,$ power."

"Controlling the false positive rate at $\alpha = 5$ %, the statistical power at $1 - \beta = 80$ %, and using N = 19500 birth records, our study will be sensitive to an effect size of 2 %."

"Using N = 19500 birth records, assuming an effect size of 2 %, and holding the statistical power to $1 - \beta = 80$ %, our study will be able to hold the false positive rate to $\alpha = 5$ %."

What happens to the sample size if:

- SD increases
- Power increases
- Detectable difference decreases
- Level of significance decreases

You are supposed to do this:

- 1. Assume a false positive rate of $\alpha = 5\%$ (standard)
- 2. Assume a power of $1 \beta = 80 \%$ (standard)
- 3. Assume what you consider to be a biologically significant effect size
- 4. Compute & use the required sample size N.

You'll actually probably do this:

- 1. Assume a false positive rate of $\alpha = 5$ % (standard).
- 2. Assume a power of $1 \beta = 80 \%$ (standard)

If the detectable 3. Assume a reasonable / affordable sample size *N* effect size 4. Compute & report the detectable effect size. is too small

- 1. Assume a false positive rate of $\alpha = 5$ % (standard).
- 2. Assume a power of $1 \beta = 80\%$ (standard)
- 3. Assume what you consider to be a biologically significant effect size: $\Delta \mu \ge 0.1$ F. $\Delta \mu = 0.2$ F The key parameter is the "normalized effect size": $\frac{\Delta \mu}{\sigma}$ From preliminary data, we know $\sigma \approx 0.7$ F
- 4. Compute the required sample size: N = 1540 N = 386Too big! OK.

There are a number of online power analysis calculators

http://powerandsamplesize.com/

Welcome!

Power and Sample Size .com

Free, Online, Easy-to-Use Power and Sample Size

no java applets, plugins, registration, or downloads

Go Straight to the Calulators »

Analysis of variance (ANOVA)

Where we stand: to compare numerical data in multiple independent groups

Assumptions:

- Errors should be random and independent
- Normality
- Homogeneity of variances

If assumptions violated,

- Transform your data and see if they meet assumptions
- If still violated, try nonparametric approach (Kruskal-Wallis test)

- Idea: Instead of doing multiple pairs of comparisons, why don't we do a single test?
 - This test will tell us whether there is difference in any of the means.
 - We do multiple comparisons between pairs **only after** we know there is difference in means across the groups.

• Hypotheses:

•

•

- H₀: All group means are the same. (H₀: $\mu_1 = \mu_2 = ... = \mu_p$)
- H_a: At least one group mean is different.

Process:

- (p> α) fail to reject H₀ \rightarrow all group means are the same \rightarrow No further investigation
- \circ (p<α) reject H₀ → At least one group mean is different → Post-hoc analysis (i.e., pairwise comparison) to identify which group(s) mean(s) are significantly different.

One-way ANOVA example: hormone levels in runners

Hetland et al. (1993) investigated the level of luteinizing hormone (LH) in runners. Runners were classified into three groups: elite runners, recreational runners, and nonrunners.

GROUP	LOG(LH)	SD	SEM	Ν
nonrunners	0.52	0.25	0.027	88
recreational runners	0.38	0.32	0.034	89
elite runners	0.40	0.26	0.049	28
One-way ANOVA analyzes whether group means are significantly different

Null hypothesis: All group means are the same

Alternative hypothesis: At least one group mean is different

One-way ANOVA analyzes whether group means are significantly different

The null hypothesis, implies that: $F \sim FDist(DF_{between}, DF_{within})$

One-way ANOVA analyzes whether group means are significantly different

	SOURCE OF VARIATION	SUM OF SQUARES	DF	MS	F RATIO	P VALUE	
	Between groups	0.93	2	0.46	5.69	0.0039	
-	Within groups (resid.)	16.45	202	0.081			
=	Total	17.38	204				

This shows that the at least one group have significantly different mean. It does **NOT**, however, tell which means are different. If there are differences in means, *post-hoc analysis* are typically required to identify which groups are different.

Tukey's test analyzes which pairwise comparisons in a one-way ANOVA, if any, are significant.

Tukey's test automatically incorporates the necessary multiple hypothesis correction into the test of significance.

There are other ANOVA post-hoc tests as well.

.

Welcome to GraphPad Prism

						🧯 one-way	_anova.pzfx						
Q~ Search		Та	able format:		Group A			Group B			Group C		
▼ Data Tables	>>		Grouped		Nonrunners		Red	creational runn	ers		Elite runners		
🧮 Data 1			8	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean
⊕ New Data Table		1	Title	0.52	0.25	88	0.38	0.32	89	0.4	0.26	28	
▼ Info	>>	2	Title										
Project Info 1 A New Info		3	Title										
▼ Results	>>	3	Title										
New Analysis	-	4	Title										
▼ C ths	>>	5	Title										
11		6	Title										
(7	Title										
▼ Layou s	>>	8	Title										
(+) Nelezayout		9	Title										
		10	Title										
		11	Title										
		12	Title										
0		13	Title										
Family	>>	14	Title										
Data 1	1	15	Title										
		16	Title										
		17	Title										
	-	1.9	Title										
	-	10	Title										
	-	19	Title										
	-	20	Title										
		21	Title										
		22	Title										
		23	Title										
		24	Title										
		25	Title										
		26	Title										
		27	Title										
) 88			Data 1		~	e 🕈 🖬 Ro	ow 2, C: Elite runne	ers		Q	

Create New	Analysis
ata to analyze	
Table: Data 1	¥
/pe of analysis	
Which analysis?	Analyze which data sets?
▼ Transform, Normalize	A:Nonrunners
Transform	B:Recreational runners
Transform concentrations (X)	C:Elite runners
Normalize	
Prune rows	
Remove baseline and column math	
Transpose X and Y	
Fraction of Total	
▶ XY analyses	
▼ Column analyses	
t tests (and nonparametric tests)	
One-way ANOVA (and nonparametric o	
One sample t and Wilcoxon test	
Descriptive statistics	
Normality and Lognormality Tests	
Frequency distribution	
ROC Curve	
Bland-Altman method comparison	
Identify outliers	
Analyze a stack of P values	
Grouped analyses Continuous toblo on olygood	Coloct All
Contingency table analyses	Deselect All
	Cancel
	Cancer

	D		0.11	
Experimental Design	Repeated Measures	Multiple Comparisons	Options	Residuals
ollowup tests				
O None.				
Compare the mean	of each column with the	mean of every other colu	mn.	
ompare the mean	of each column with the	mean of a control column	l.	
column:	Group A: Nonrunners	\$		
Compare the means	of preselected pairs of	columns.		
Selected pairs:	elect			
O Test for linear trend	between column mean a	and left-to-right column o	rder.	
Vhich test?				

Experimental Design	Repeated Measures	Multiple Comparisons	Options Residuals
Iultiple comparisons tes	st		
Ocrrect for multiple c	omparisons using statis	tical hypothesis testing. R	ecommended.
Test: Tukey (recom	imended)		O
Ocrrect for multiple o	omparisons by controlli	ng the False Discovery Ra	te.
Test: Two-stage st	ep-up method of Benjar	nini, Krieger and Yekutieli	(recommended) ᅌ
O Don't correct for mult	tiple comparisons. Each	comparison stands alone.	
Test: Fisher's LSD te	est		
Multiple comparisons op	tions		
Swap direction of cor	mparisons (A-B) vs. (B-A	A).	
Ζ Report multiplicity ad	justed P value for each	comparison.	
Each P value is adjusted	to account for multiple com	nparisons.	
Family-wise significance	and confidence level:	0.05 (95% confidence i	nterval) ᅌ
Graphing			
Graph confidence int	ervals.		
Graph ranks (nonpara	ametric).		
Graph differences (re	peated measures).		
Additional results			
Descriptive statistics	for each data set.		
Report comparison o	f models using AICc.		
Report goodness of f	it.		
Dutput			
Show this many significa	ant digits (for everything	except P values): 4 🗘	
P value style: GP: 0.12	234 (ns), 0.0332 (*), 0.00	021 (**), 0.0002 (***), <0.0	001 (** ᅌ 🛛 🛛 🕄
Make entions on this to	h ha tha dafault far fut		
I wake options on this ta	b be the default for futu	ire One-way ANOVAS.	
			Canad
			Cancel

•••		📔 one-	-way_anova.pzf>	c — Edited					
Q~ 😵			< ~						
Restrict: Sheet \Diamond is Any \Diamond)								
▼ Data Tables >>>		Ordinary one-way A							
🖽 Data 1		ANOVATESUIT							
⊕ New Data Table									
▼ Info »	1	Table Analyzed	Data 1						
(i) Project info 1	2	Data sets analyzed	A-C						
(+) New Info ▼ Results >> 1	3								
Ordinary one-way ANOVA of Data	4	ANOVA summary							
• New Analysis	5	F	5.752						
▼ Graphs >>	6	P value	0.0037						
🗠 Data 1	7	P value summary	**						
New Graph	8	Significant diff. among means (P < 0.05)?	Yes						
Avenuation	9	R squared	0.05388						
() New Esylution	10								
	11	Brown-Forsythe test							
	12								
	12	Pustus							
	13	P value							
	14	P value summary							
	15	Are SDs significantly different (P < 0.05)?							
Family >>	16								
🖽 Data 1	17	Bartlett's test							
Ordinary one-way ANOVA	18	Bartlett's statistic (corrected)	5.667						
	19	P value	0.0588						
	20	P value summary	ns						
	21	Are SDs significantly different (P < 0.05)?	No						
	a series		1000 1000 1000		-	Contraction dia Base of			
	3	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value		
	4	Treatment (between columns)	0.9268	2	0.4634	F(2, 202) = 5,752	P=0.0037		
	5	Posidual (within columns)	16.27	202	0.9056	1 (2, 202) = 0.102	1 -0.0007		
	0		10.27	202	0.00030				
	26	Iotal	17.20	204				3	
	2								
	28	Data summary							
	29	Number of treatments (columns)	3						
	30	Number of values (total)	205						
	31								
	32								
	 P		-way ANOVA of D	ata 1	Row 1	Column A		Q	(+)
						Column A			~

Image: Control with a low of the line with a low of the line with a low of the line with line											
C Contractions Contractio	• • •			🧧 one-w	ay_anova.pzfx — Edited						
Name: Norticinary one-way ANOVA Multiple comparisons Nome	Q* 😵	🗐 A	NOVA results \times 🗐 Multiple comparisons \times \vee								
Valuation Multiple comparisons	Restrict: Sheet 🔿 is Any 🔿		Ordinary one-way ANOVA								
Image: bit is a bit is bit is a bit bit is a bit is a bit bit is a bit is a bit is a bit	▼ Data Tables >>>		Multiple comparisons								
Or participant I Number of families I <td>🖽 Data 1</td> <td></td>	🖽 Data 1										
Non-one-set of the second of manual second of manua	New Data Table	1	Number of families	1							
Image: state Image: state<	▼ Into >>	2		2							
View 3 Appa 0.55 For each of the comparison set in the comparis		2	Number of comparisons per family	3							
Image: second control of control	▼ Results >> -	3	Alpha	0.05							
Other stand Takey's multiple comparisons text Mean Diff. 90% C0 of diff. Significan? Summary Adjusted Palae Coloradian Colo	Ordinary one-way ANOVA of Data	1 gro	and a stand and a stand and a stand a stand and a stand	SALTO SALES CONT	THE REAL PROPERTY AND A REAL AND A	Ward and a state	the state of the second	warmalken and the start			
Original second contracts 0.1400 0.03925 0.0247 Yes ** 0.0035 A-B Contracts Contracts Display No ns 0.1279 A-C Contracts Contracts<	① New Analysis		Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value			
Image: state in the s	▼ Graphs »>		Nonrunners vs. Recreational runners	0.1400	0.03925 to 0.2407	Yes	**	0.0035	A-B		
Average Notability	Data 1	7	Nonrunners vs. Elite runners	0.1200	-0.02541 to 0.2654	No	ns	0.1279	A-C		
Norm Norm <th< td=""><td>+ A × Graph</td><td></td><td>Recreational runners vs. Elite runners</td><td>-0.02000</td><td>-0.1652 to 0.1252</td><td>No</td><td>ns</td><td>0.9434</td><td>B-C</td><td></td><td></td></th<>	+ A × Graph		Recreational runners vs. Elite runners	-0.02000	-0.1652 to 0.1252	No	ns	0.9434	B-C		
Image: Normanes vs. Recreational runners Mean 1 Mean 2 Mean Diff. SE of diff. n1 n2 q DF 11 Nonrunners vs. Recreational runners 0.5200 0.3800 0.1400 0.04267 88 89 4.640 202 12 Nonrunners vs. Eilte runners 0.5200 0.4000 0.1200 0.06159 88 28 2.756 202 Family 14 Recreational runners vs. Eilte runners 0.800 0.4000 0.02000 0.06150 89 2.80 0.4599 202 Family 14 Family 14 Recreational runners vs. Eilte runners 0.800 0.4000 0.02000 0.06150 89 2.80 0.4599 202 Family 15 Recreational runners vs. Eilte runners 0.800 0.4000 0.02000 0.06150 89 2.80 0.4599 202 Image: Data 15 Image: Data	⊕ A vt	J.		and the second second							
11 Nonunners vs. Recreational runners 0.5200 0.3800 0.1400 0.04267 88 89 4.640 202 12 Nonunners vs. Eilte runners 0.5200 0.4000 0.1200 0.06159 88 28 2.756 202 Family 13 Recreational runners vs. Eilte runners 0.3800 0.4000 -0.02000 0.06150 89 28 0.4599 202 Family 14 Recreational runners vs. Eilte runners 0.3800 0.4000 -0.02000 0.06150 89 28 0.4599 202 Family 14 Recreational runners vs. Eilte runners 0.3800 0.4000 -0.02000 0.06150 89 28 0.459 202 Family 15 Recreational runners vs. Eilte runners 0.3800 0.4000 -0.0200 0.06150 89 28 0.459 202 I Definition Recreational runners Recreational runners Recreational runners Recreational runners Recreational runners Recreational runners Re		10	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
12 Nonumers vs. Elite numers 0.5200 0.4000 0.2000 0.06159 88 28 2.756 202 Family 14 0.4000 0.02000 0.06150 89 28 0.4599 202 Condinary one-way ANOVA 14 0.400 0.4000 0.02000 0.06150 89 28 0.4599 202 Condinary one-way ANOVA 15 14 0.400 0.4000 0.02000 0.06150 89 28 0.4599 202 Condinary one-way ANOVA 15 16 0.400 0.4000 0.02000 0.06150 89 28 0.4599 202 16 0.701inary one-way ANOVA 15 16 0.701 <t< td=""><td></td><td>11</td><td>Nonrunners vs. Recreational runners</td><td>0.5200</td><td>0.3800</td><td>0.1400</td><td>0.04267</td><td>88</td><td>89</td><td>4.640</td><td>202</td></t<>		11	Nonrunners vs. Recreational runners	0.5200	0.3800	0.1400	0.04267	88	89	4.640	202
13 Recretional numers vs. Eilte runners 0.3800 0.4000 -0.02000 0.06150 89 28 0.4599 202 Family 14		12	Nonrunners vs. Elite runners	0.5200	0.4000	0.1200	0.06159	88	28	2.756	202
Family 14 Image: state in the state	0	13	Recreational runners vs. Elite runners	0.3800	0.4000	-0.02000	0.06150	89	28	0.4599	202
Image: Data 1 15 Image: I	Family >>	14									
• Ordinary one-way ANOVA • • • • • • • • • • • • • • • • • • •	🖽 Data 1	15									
17 17 10 <td< td=""><td>Ordinary one-way ANOVA</td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ordinary one-way ANOVA	16									
1 1		17									
19 10 <td< td=""><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		18									
20 21 <td< td=""><td></td><td>19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		19									
21 21 <td< td=""><td></td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		20									
22 23 23 24 24 25 24 25 26 26 27 <td< td=""><td></td><td>21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		21									
23 23 24 24 25 25 26 26 27 <td< td=""><td></td><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		22									
24 24 24 24 25 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 <td< td=""><td></td><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		23									
25 25 26 26 27 <td< td=""><td></td><td>24</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		24									
26 27 27 28 27 26 26 27 26 <		25									
		26									
		27									
		3 8	Ordinary one-way ANOVA o	of Data 1	Row 1, Column A	I	1	I		Q. — () —	

Change Graph Type	
Graph family: Grouped	
Individual values Summary data Heat Map Three-way Box and viol	in
	_
Interleaved bars Plot: Mean with SD Set as default for Interleaved	
Dat 1	
0.8- Nonrunners	
Elite runners Bergenen for a runners Bergenen for a runners Elite runners Elite runners Elite runners	>
?	ок

	Graph family:	Change Grouped	e Graph Type	`		
	Individual values Su	mmary data	Heat Map	Three-way	Box and violi	n
Inte Pl	ot: Mean with SEM	≎ ved bars				
	0.6 0.4- 0.2- 0.0 Norming	Data 1	■ No ■ Re ■ Elit	nrunners creational runner te runners	rs	>
?						

Two-way ANOVA tests whether to see if there is an interaction between groups

(data curtsey of Tobias Janowitz)

Null model: $y_i = \beta_0 + \epsilon_i$

Alternative model #1: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$

Alternative model #2: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} x_{i2} + \epsilon_i$ interaction term

.

Welcome to GraphPad Prism

								📔 two-wa	ay_anova.p	zfx										
Q~ Search		Та	able format:				Group A							Group B						
▼ Data Tables	>>		Grouped				LM							C26						
PPARa			8	A:Y1	A:Y2	A:Y3	A:Y4	A:Y5	A:Y6	A:Y7	B:Y1	B:Y2	B:Y3	B:Y4	B:Y5	B:Y6	B:Y7	C:Y1	C:Y2	C:
⊕ New Data Table	-	1	NF	0.896878	0.757779	1.209183	0.824336	1.311823			0.861320	0.868462	0.899686	1.307027	1.272415					
▼ Info	>>	2	КD	2 435268	2 045139	2 460515	1 472005	1 732875			1 119927	1 244879	1 509778	1 416881	1 819409	1 710366	1 470989			
New Info Results		3	Title	2.100200	2.010100	2.100010	1.172000	1.102010				1.211010	1.000110	1.410001	1.010400		1.110000			-
= 2way ANOVA of PPARa		4	Title																	-
⊕ New Analysis	-	4	THE																	_
▼ Graphs	>>	5	TITIE																	_
PPARa	_	6	Title																	_
New Graph	_	7	Title																	_
▼ Layouts	>>	8	Title																	_
() New Layout		9	Title																	
		10	Title																	
		11	Title																	
		12	Title																	
	_	13	Title																	
		14	Title																	
		15	Title																	
Family	>>	16	Title																	
PPARa		17	Title																	
E 2way ANOVA	-	1.9	Title																	-
PPARa	-	10	Title																	_
	-	19	Title																	_
	-	20	Title																	-
	_	21	TITIE																	_
	_	22	Title																	
	_	23	Title																	
	_	24	Title																	_
		25	Title																	
		26	Title																	
		27	Title																	
		28	Title																	
		29	Title																	
		30	Title																	
		31	Title																	
) 88			PPARa	1		~	e ₹	📍 Row 2, B:	C26						Q -	0		Ð,

	nalysis
a to analyze	
able: PPARa	
e of analysis	
/hich analysis?	Analyze which data sets?
Transform, Normalize	🗹 A:LM
Transform	✓ B:C26
Transform concentrations (X)	
Normalize	
Prune rows	
Remove baseline and column math	
Transpose X and Y	
Fraction of Total	
▶ XY analyses	
Column analyses	
Grouped analyses	
Two-way ANOVA (or mixed model)	
Three-way ANOVA (or mixed model)	
Row means with SD or SEM	
Multiple t tests - one per row	
Contingency table analyses	
Survival analyses	
Parts of whole analyses	
Multiple variable analyses	
Nested analyses	
Nested analyses Generate curve	

1		Para	meters: Two-Way	ANOVA (or Mixed Model)	
	RM Design	RM Analysis	Factor Names	Multiple Comparisons	Options Residuals
What	kind of com	parison?			
C	ompare cell m	eans regardless	of rows and colur	mns 📢 🗘	+ +
		Group A	Gr		
	đ	Data Set-A	Data	Set-B	
		A:Y1 A:Y2	2 B:Y1	B:Y2	
	1	Mean	M	ean	
	2	Mean		ean	
low	many compa	risons?			
0	Compare eac	h cell mean with	every other cell n	nean.	
0	Compare eac	h cell mean with	the control (uppe	er-left) cell mean.	
	C	ontrol cell: LM	: NF	0	
low	many familie	s?			
		ll the second star	ns	\$	
0	ne family for a	all the compariso			
O Whic	ne family for a	ili the compariso			
Whick	ne family for a h test?	the Options tab t	to choose the test	and to sat the defaults f	or futuro ANOVAs
Whic Us	ne family for a h test? e choices on t	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Us	ne family for a h test? e choices on t	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Us	ne family for a	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Us	ne family for a	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Us	ne family for a	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Whic	ne family for a	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Us	ne family for a	the Options tab t	to choose the test	t, and to set the defaults f	or future ANOVAs.
Whic	ne family for a	the Options tab	to choose the test	t, and to set the defaults f	or future ANOVAs.

R	/ Design	RM Analysis	Factor Names	Multiple Comparisons	Options Residua	ls
Aultiple	comparis	ons test				
Cor	rect for mu	ultiple compariso	ons using statisti	cal hypothesis testing. Red	commended.	
Tes	t: Holm-	Sidak (more pov	ver, but can't cor	npute confidence intervals	s) 💦 ᅌ	
O Cor	rect for mu	ultiple compariso	ons by controlling	the False Discovery Rate		
Tes	t: Two-s	tage step-up me	ethod of Benjami	ni, Krieger and Yekutieli (r	ecommended	
ODor	't correct	for multiple com	parisons. Each c	omparison stands alone.		
Tes	t: Fisher's	s LSD test				
Aultiple	comparis	ons options				
Swa	ap direction	n of comparison	s (A-B) vs. (B-A)			
🔽 Rep	ort multipl	licity adjusted P	value for each co	omparison.		
Each	n P value is a	adjusted to accoun	t for multiple comp	arisons.		
Family	wise signi	ficance and con	fidence level:	0.05	0	
Graphin	g options					
🗌 Gra	ph confide	ence intervals.				
ddition	al results					
🗌 Nar	rative resu	ilts.				
Sho	w cell/row	/column/grand p	redicted (LS) me	eans.		
🗌 Rep	ort goodn	ess of fit.				
Dutput						
Show t	his many s	significant digits	(for everything e	except P values): 4		
P value	style:	GP: 0.1234 (ns),	0.0332 (*), 0.00	21 (**), 0.0002 (***), <0.00	001 (****) ᅌ N=	6 🗘
Make	options or	n this tab be the	default for future	e Two-Way ANOVAs.		

• •				two-way_anova	.pzfx — Edited							
Q~ Search	E ANOVA results × E Multiple comparisons × ×											
 Data Tables PPARa New Data Table 	»	2way ANOVA ANOVA results										
▼ Info	>>											
New Info	1	Table Analyzed	PPARa									
Results ANOVA of PPARa	» 2											
= 2way ANOVA of PPARa	3	Two-way ANOVA	Ordinary									
① New Analysis	4	Alpha	0.05									
▼ Graphs	» 5											
PPARa	6	Source of Variation	% of total variation	P value	P value summary	Significant?						
▼ Lavouts	» 7	Interaction	9.695	0.0291	*	Yes						
Hew Layout	8	Row Factor	57.11	<0.0001	****	Yes						
	9	Column Factor	7.185	0.0561	ns	No						
	10											
	11	ANOVA table	SS (Type III)	DF	MS	F (DFn, DFd)	P value					
	12	Interaction	0.4856	1	0.4856	F (1, 18) = 5.623	P=0.0291					
	13	Row Factor	2.860	1	2.860	F (1, 18) = 33.12	P<0.0001					
0	14	Column Factor	0.3599	1	0.3599	F (1, 18) = 4.167	P=0.0561					
Family	» 15	Residual	1.554	18	0.08636							
= 2way ANOVA	16											
	17	Difference between column means										
	18	Predicted (LS) mean of LM	1.515									
	19	Predicted (LS) mean of C26	1.256									
	20	Difference between predicted means	0.2585									
	21	SE of difference	0.1266									
	22	95% CI of difference	-0.007533 to 0.5246									
	23											
	24	Difference between row means										
	25	Predicted (LS) mean of NF	1.021									
	26	Predicted (LS) mean of KD	1.750									
	27	Difference between predicted means	-0.7288									
	28	SE of difference	0.1266									
	29	95% CI of difference	-0.9949 to -0.4628									
	20		OVA of PPARa	<u>لہ</u>	P ▼ Row 1. Column A					Θ		•

•••			📔 two-way_i	anova.pzfx — Edited									
Q- Search	ANOVA results × = Multiple comparisons × ×												
▼ Data Tables >>>		2way ANOVA Multiple comparisons											
New Info	1	Compare cell means regardless of rows and columns											
▼ Results >>	2						_						
2way ANOVA of PPARa	3	Number of families	1					_					
(+) New Analysis Graphs >>>	4	Number of comparisons per family	6										
[∧] PPARa	5	Alpha	0.05										
⊕ New Graph	6												
▼ Layouts »>	7	Holm-Sidak's multiple comparisons test	Predicted (LS) mean diff.	Significant?	Summary	Adjusted P Value							
0	8												
	9	NF:LM vs. NF:C26	-0.04178	No	ns	0.8247							
	10	NF:LM vs. KD:LM	-1.029	Yes	***	0.0002							
	11	NF:LM vs. KD:C26	-0.4703	Yes	*	0.0404							
	12	NF:C26 vs. KD:LM	-0.9874	Yes	***	0.0002							
	13	NF:C26 vs. KD:C26	-0.4285	Yes	*	0.0450							
• Eamily	14	KD:LM vs. KD:C26	0.5588	Yes	*	0.0178							
I PPARa	15												
E 2way ANOVA	16												
	17	Test details	Predicted (LS) mean 1	Predicted (LS) mean 2	Predicted (LS) mean diff.	SE of diff.	N1	N2	t	DF			
	18												
	19	NF:LM vs. NF:C26	1.000	1.042	-0.04178	0.1859	5	5	0.2248	18.00			
	20	NF:LM vs. KD:LM	1.000	2.029	-1.029	0.1859	5	5	5.537	18.00			
	21	NF:LM vs. KD:C26	1.000	1.470	-0.4703	0.1721	5	7	2.733	18.00			
	22	NF:C26 vs. KD:LM	1.042	2.029	-0.9874	0.1859	5	5	5.313	18.00			
	23	NF:C26 vs. KD:C26	1.042	1.470	-0.4285	0.1721	5	7	2.490	18.00			
	24	KD:LM vs. KD:C26	2.029	1.470	0.5588	0.1721	5	7	3.248	18.00			
	25												
	26												
	27												
	28												
	29												
I ▲ ▶ ≪ [C 88	2way ANOVA of PPARa	Row 1, Col	lumn A	I	I			1		Q -	-0	•

Multiple hypothesis testing

The problem of multiple subgroups

https://xkcd.com/882/

The family-wise error rate increases rapidly with the number of tests performed

Scenario:

we perform null hypothesis tests on K independent datasets, for each of which the null hypothesis is true.

Family-wise error rate:

Probability of having at least one false positives in multiple comparisons

 $p(\text{FP} \ge 1 | \text{null hypothesis}) = 1 - \text{confidence}^{K}$

FWER for different number of comparisons given different significance levels:

	1	3	6	10	15	21	28	36	45
0.05	0.05	0.14	0.26	0.4	0.54	0.66	0.76	0.84	0.90
0.01	0.01	0.03	0.06	0.1	0.14	0.19	0.25	0.30	0.36

Approach	What you control	Expression
No correction	α: if all null hypotheses are true, the <u>fraction of tests</u> that produce a significant result	$\alpha = \frac{\text{FP}}{\text{FP} + \text{TN}}$
Bonferroni / Dunn-Sidak	 α: if all null hypotheses are true, the <u>chance of obtaining one or</u> <u>more</u> significant results 	$\alpha = p(\#\text{FP} > 0)$
False discovery rate (FDR)	Q: the fraction of all discoveries for which the null hypothesis is actually true	$Q = \frac{\text{FP}}{\text{FP} + \text{TP}}$

Lucas et al. (2005)

Bonferroni correction:

$$\alpha_{\text{Bonferroni}} = \frac{\alpha}{K}$$

Dunn-Sidak correction:

$$\alpha_{DS} = 1 - (1 - \alpha)^{1/K}$$

Dunn-Sidak is the exact solution; Bonferroni is an approximation

Example: differential expression (simulation)

First, convert data to p-values

Benjamini–Hochberg procedure

Choose α_{BH} such to match the target False Discovery Rate (10% here):

$$FDR = Q = \frac{FP}{TP + FP} = \frac{P}{P}$$

Declare all P-values below $\alpha_{\rm BH}$ as "discoveries".

"Most scientists are oblivious to the problems of multiplicities. Yet they are everywhere. In one or more of its forms, multiplicities are present in every statistical application. They may be out in the open or hidden. And even if they are out in the open, recognizing them is but the first step in a difficult process of inference. Problems of multiplicities are the most difficult that we statisticians face. They threaten the validity of every statistical conclusion."

from Berry (2007, p. 155), in Motulsky, Ch. 23

multiple subgroups:

You perform tests on multiple subgroups of your data.

multiple ways to dichotomize:

You do pairwise comparisons between different combinations of subgroups.

multiple sample sizes:

You keep collecting data until you find P < 0.05.

DO NOT DO THIS.

multiple ways to preprocess the data:

You analyze data preprocessed in multiple different ways.

multiple statistical tests:

You use different statistical tests on the same data before finding P < 0.05.

Motulsky, Ch. 23

multiple ways to select relevant variables:

You try to model your data using different subsets of possible variables.

multiple ways to analyze your data ("garden of forking paths"):

You try lots of qualitatively different analysis strategies.

outcome switching:

You change the quantity you care about after you've looked at the data.

multiple geographic areas:

E.g., you investigate a "cancer cluster" you hear about in the news.

Motulsky, Ch. 23

Scenario 1:

If readers can be reasonably expected to account for multiple comparisons on their own.

Scenario 2:

Before looking at the data, you have clearly defined one outcome as primary and others as secondary.

Scenario 3:

You make only a few planned comparisons and your P-values are not marginal.

Scenario 4:

A large fraction the tests you perform are significant.

Motulsky, Ch. 19
Practical advice of avoiding multiple hypothesis pitfalls

Raise your standards: use $\alpha = 0.01$, not $\alpha = 0.05$.

Separate exploratory data analysis from confirmatory data analysis.

Distinguish <u>critical p-values</u> from <u>ancillary p-values</u>.

Don't spend too much time analyzing a small dataset.

When generating small expensive datasets (e.g. mice), blind your experiments as best you can, and plan your analysis ahead of time

When in doubt, double-check your hypothesis with <u>new data</u>

Don't worry about informal multiple hypothesis testing when $P < 10^{-4}$.

Questions?