Correlation
 Power analysis
 Analysis of variance (ANOVA)
 Multiple hypothesis testing

Biostatistics Course 2023
Lecture 4
Thursday, 27 July 2023
1:00pm - 3:00pm

Correlation

sensitivity	fatty_acid
250	17.9
220	18.3
145	18.3
115	18.4
230	18.4
200	20.2
330	20.3
400	21.8
370	21.9
260	22.1
270	23.1
530	24.2
375	24

Borkman et al. (1993) wanted to understand why insulin sensitivity varies so much among individuals. They hypothesized that the lipid composition of the cell membranes of skeletal muscle affects the sensitivity of the muscle for insulin.

They determined the insulin sensitivity of $N=13$ healthy men by infusing insulin at a standard rate (adjusting for size differences) and quantifying how much glucose they needed to infuse to maintain a constant a blood glucose level...

They also took a small muscle biopsy from each subject and measured its fatty acid composition. We'll focus on the fraction of of polyunsaturated fatty acids that have between 20 and 22 carbon atoms ("fatty_acid").

- a measure of relatedness of two variables, X and Y
- independent of measurement units
- ranges between -1 and 1

summary statistics

	pearson
N	13
r	0.77
$95 \% \mathrm{Cl}$	$[0.38,0.93]$
r 2	0.593
P -val	0.00207701

The formula for variance is

$$
\widehat{\operatorname{var}}(x)=\sigma_{x}^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\hat{\mu}_{x}\right)^{2}
$$

Covariance is estimated in a manner similar to variance

$$
\widehat{\operatorname{cov}}(x, y)=\frac{1}{N-1} \sum_{i}\left(x_{i}-\hat{\mu}_{x}\right)\left(y_{i}-\hat{\mu}_{y}\right)
$$

The corresponding "correlation coefficient" is

$$
r=\frac{\widehat{\operatorname{cov}}(x, y)}{\hat{\sigma}_{x} \hat{\sigma}_{y}}
$$

Pearson's r ranges from -1 to 1 .
$r=0$ implies independence or no relationship, i.e. $p(x, y)=p(x) \cdot p(y)$.
$r= \pm 1$ when the two variables share a deterministic linear relationship.
r close to 1 implies nearly perfect positive dependence
r close to - 1 implies nearly perfect negative dependence
Adding a constant to all x or all y, or a multiplicative rescaling of all x or all y, do not change r.

This is what the correlation coefficient looks like

In the deterministic case, r is unaffected by the magnitude of the slope relating two variables, while the sign of r is equal to the sign of the slope.

Sometimes $r=0$ when two variables have a non-linear relationship. Note that the correlation coefficient only captures linear relationships between two variables.

Example: Quadratic Association

$\operatorname{Cor}[\mathrm{x}, \mathrm{y}]=\mathbf{- 0 . 0 1}$

The coefficient of determination is simply r^{2}, which is also often written as R^{2}.
r^{2} is always between 0 and 1 (inclusive)
Remember that $r^{2} \leq|r|$, so beware of people reporting r instead of r^{2} to make a correlation seem stronger.
r^{2} is commonly interpreted as the fraction of variance in y explained by x (or the other way around).

Null hypothesis is "no correlation between the variables"

$$
H_{0}: \rho=0
$$

Alternative hypothesis is "there is a relationship between the variables"

$$
\begin{array}{ll}
H_{a}: \rho \neq 0 & \text { (two-sided), or } \\
H_{a}: \rho<0 & \text { (one-sided less, or) } \\
H_{a}: \rho>0 & \text { (one-sided greater) }
\end{array}
$$

Test statistic is t-statistic that has a t_{n-2} under the null hypothesis

$$
t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}
$$

Null hypothesis is "no correlation between the variables"

$$
H_{0}: \rho=0
$$

Alternative hypothesis is "there is a relationship between the variables"

$$
\begin{array}{ll}
H_{a}: \rho \neq 0 & \text { (two-sided), or } \\
H_{a}: \rho<0 & \text { (one-sided less, or) } \\
H_{a}: \rho>0 & \text { (one-sided greater) }
\end{array}
$$

Lots of different-looking datasets will have the same value for r.
"Anscombe's quartet": $r=0.816$ for all 4 datasets

Assumptions underlying correlation

Interpreting the correlation coefficient r, and especially the associated P -value, requires multiple assumptions:

- Each data point (x, y) is independently sampled from a 2D Gaussian distribution.
- In particular, x and y each follow a 1D Gaussian distribution
- All covariation between x and y is linear, with perfect concordance disrupted only by Gaussian noise.

Possible reasons for a correlation between lipid levels and insulin sensitivity:

- The lipid content of membranes affects insulin sensitivity
- The insulin sensitivity affects membrane lipid content
- Both insulin sensitivity and lipid content are under the control of some third factor, such as a hormone.
- Lipid content, insulin sensitivity, and other factors are all part of a complex molecular/biochemical/physiological network, perhaps with positive and/or negative feedback components. The correlation observed is just a peak at a much more complex set of interdependent relationships.
- Membrane lipid content and insulin sensitivity don't actually correlate at all; the result is just a coincidence.

XY tables: Each point is defined by an X and Y coordinate

Data table:

- Enter or import data into a new table

Start with sample data to follow a tutoria
Options:
X:Numbers
Numbers with error values to plot horizontal error bars
Dates
Elapsed times
Y: Enter and plot a single Y value for each point ter $3 \quad \hat{v}$ replicate values in side-by-side subcolumns
After and plot error values already calculated elsewhere
Enter: Mean, SD, N

B．correlation．pzfx							
Q－Search		Table format：XY			X	Group A	Group B
－Data Tables	＞				sensitivity	fatty＿acids	Title
\＃Data 1				\star	X	Y	Y
\oplus New Data Table．．． Info （i）Project info 1 † New Info．．． Results	＞	1	Title		250	17.9	
		2	Title		220	18.3	
		3	Title		145	18.3	
	＞	4	Title		115	18.4	
		5	Title		230	18.4	
	＞	6	Title		200	20.2	
		7	Title		330	20.3	
	＞	8	Title		400	21.8	
Family		9	Title		370	21.9	
\triangle Data 1		10	Title		260	22.1	
		11	Title		270	23.1	
		12	Title		530	24.2	
		13	Title		375	24.4	
		14	Title				
		15	Title				
		16	Title				
$\square \square$		㗊	曲（i弓以岩				

Data to analyze

Table: Data 1

Type of analysis

Which analysis?
∇ Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

- XY analyses

Nonlinear regression (curve fit)
Linear regression
Fit spline/LOWESS
Smooth, differentiate or integrate curve
Area under curve
Deming (Model II) linear regression
Row means with SD or SEM
Correlation
Interpolate a sta rd curve

- Column analyses

Grouped analyses

- Contingency table analyses

Survival analyses

Analyze which data sets?
\checkmark A:fatty_acids

When you analyze tables or graphs with more than one data set, use this space to select which data set(s) to analyze.

Compute correlation between which pairs of columns?
Compute r for every pair of Y data sets (Correlation matrix)Compute r for X vs. every Y data set:

```
X: sensitivityCompute \(r\) between two selected data sets:


A: fatty_acids

\section*{Assume data are sampled from Gaussian distributions?}Yes. Compute Pearson correlation coefficientsNo. Compute nonparametric Spearman correlation
Options
P value: One-tailed Two-tailed
Confidence interval: 95\%

Output
Show this many significant digits (for everything except \(P\) values):
P Value Style: GP: 0.1234 (ns), \(0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), \ldots \quad \hat{v} N=6\) Graphing
\(\checkmark\) Create a heatmap of the correlation matrix

Make these choices the default for future analyses


\section*{Spearman's rank correlation is a non-parametric measure of dependence}

Spearman's \(\rho\) is just Pearson's \(r\) computed on the ranks of the \(x\) and \(y\) values which is a robust measure of correlation.
\begin{tabular}{|rr|}
\hline \(\mathbf{x}\) & \(\mathbf{y}\) \\
\hline 17.9 & 250 \\
\hline 18.3 & 220 \\
\hline 18.3 & 145 \\
\hline 18.4 & 115 \\
\hline 18.4 & 230 \\
\hline 20.2 & 200 \\
\hline 20.3 & 330 \\
\hline 21.8 & 400 \\
\hline 21.9 & 370 \\
\hline 22.1 & 260 \\
\hline 23.1 & 270 \\
\hline 24.2 & 530 \\
\hline 24.4 & 375 \\
\hline
\end{tabular}
\begin{tabular}{|rr|}
\hline x rank & y rank \\
\hline 1.0 & 6.0 \\
\hline 2.5 & 4.0 \\
\hline 2.5 & 2.0 \\
\hline 4.5 & 1.0 \\
\hline 4.5 & 5.0 \\
\hline 6.0 & 3.0 \\
\hline 7.0 & 9.0 \\
\hline 8.0 & 12.0 \\
\hline 9.0 & 10.0 \\
\hline 10.0 & 7.0 \\
\hline 11.0 & 8.0 \\
\hline 12.0 & 13.0 \\
\hline 13.0 & 11.0 \\
\hline
\end{tabular}

Compute correlation between which pairs of columns?
Compute \(r\) for every pair of \(Y\) data sets (Correlation matrix)Compute r for X vs. every Y data set:
```

X: sensitivityCompute r between two selected data sets:

A: fatty_acids

Assume data are sampled from Gaussian distributions?

Output
Show this many significant digits (for everything except P values):
P Value Style: GP: 0.1234 (ns), $0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), \ldots \quad \hat{v} N=6$
Graphing
\checkmark Create a heatmap of the correlation matrix

Make these choices the default for future analyses

Power analysis

power:

The probability of getting a statistically significant result if the null hypothesis actually is actually false.

power analysis:

The process of assigning and/or computing four quantities (sometimes more) that describe one's experiment:

1. The sample size N
2. The false positive probability α (confidence $=1-\alpha$)
3. The false negative probability β (power $=1-\beta$)
4. The anticipated effect size
5. Confidence level: $1-\alpha=95 \%$
6. Number of birth records: $N=19500$
7. Hypothesized effect size: $\mid p($ boy $)-p($ girl $) \mid=2 \%$

The key parameter is $q=p$ (boy), so we use

$$
q_{\mathrm{null}}=50 \%, \quad q_{\mathrm{alt}}=51 \%
$$

math

4. We compute a statistical power of: $1-\beta=80 \%$

False Positive Probability: $\alpha=0.05$
False Negative Probability: $\beta=0.20$
(or 80\% power)

There are four relevant parameters: N, α, β, and effect size.
Power analysis involves assuming values for any three parameters and computing the value of the forth
"Controlling the false positive rate at $\alpha=5 \%$, the statistical power at $1-\beta=80 \%$, and assuming an effect size of 2%, our study will require using $N=19500$ birth records."
"Using $N=19500$ birth records, controlling the false positive rate at $\alpha=5 \%$, and assuming a 2% effect size, our study will have $1-\beta=80 \%$ power."
"Controlling the false positive rate at $\alpha=5 \%$, the statistical power at $1-\beta=80 \%$, and using $N=19500$ birth records, our study will be sensitive to an effect size of 2%."
"Using $N=19500$ birth records, assuming an effect size of 2%, and holding the statistical power to $1-\beta=80 \%$, our study will be able to hold the false positive rate to $\alpha=5 \%$."

What if...

What happens to the sample size if:

- SD increases
- Power increases
- Detectable difference decreases
- Level of significance decreases

You will most likely do one of these two things:

You are supposed to do this:

1. Assume a false positive rate of $\alpha=5 \%$ (standard)
2. Assume a power of $1-\beta=80 \%$ (standard)
3. Assume what you consider to be a biologically significant effect size
4. Compute \& use the required sample size N.

You'll actually probably do this:

1. Assume a false positive rate of $\alpha=5 \%$ (standard).
2. Assume a power of $1-\beta=80 \%$ (standard)
3. Assume a reasonable / affordable sample size N
4. Compute \& report the detectable effect size.
5. Assume a false positive rate of $\alpha=5 \%$ (standard).
6. Assume a power of $1-\beta=80 \%$ (standard)
7. Assume what you consider to be a biologically significant effect size: $\Delta \mu \geqslant 0 . \mathrm{F} . \Delta \mu=0.2 \mathrm{~F}$
The key parameter is the "normalized effect size": $\frac{\Delta \mu}{\sigma}$
From preliminary data, we know $\sigma \approx 0.7 \mathrm{~F}$
8. Compute the required sample size: $N>1540 \quad N=386$

Too big! OK.

http://powerandsamplesize.com/

Welcome!

Power and Sample Size .com

Free, Online, Easy-to-Use Power and Sample Size
no java applets, plugins, registration, or downloads

H 1 i (Calculators	Knowledge
Equality		쁘…"
1-Sample, 1-Sided		

λ Lambda

QUAD 4x GPU Workstation NVIDIA 1080Ti, Titan Xp, or Titan V

Please feel free to comme
We're also available for cc

Info (at) HyLown (dot)

2-Sample Equivalence

Analysis of variance (ANOVA)

Where we stand: to compare numerical data in multiple independent groups

Assumptions:

- Errors should be random and independent
- Normality
- Homogeneity of variances

If assumptions violated,

- Transform your data and see if they meet assumptions
- If still violated, try nonparametric approach (KruskalWallis test)
- Idea: Instead of doing multiple pairs of comparisons, why don't we do a single test?
- This test will tell us whether there is difference in any of the means.
- We do multiple comparisons between pairs only after we know there is difference in means across the groups.
- Hypotheses:
- H_{0} : All group means are the same. ($\left.H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{p}}\right)$
- H_{a} : At least one group mean is different.
- Process:
- (p>a) fail to reject $\mathrm{H}_{0} \rightarrow$ all group means are the same \rightarrow No further investigation
- $(p<\alpha)$ reject $H_{0} \rightarrow$ At least one group mean is different \rightarrow Post-hoc analysis (i.e., pairwise comparison) to identify which group(s) mean(s) are significantly different.

Hetland et al. (1993) investigated the level of luteinizing hormone (LH) in runners. Runners were classified into three groups: elite runners, recreational runners, and nonrunners.

Mean \pm SEM

GROUP	LOG(LH)	SD	SEM	N
nonrunners	0.52	0.25	0.027	88
recreational runners	0.38	0.32	0.034	89
elite runners	0.40	0.26	0.049	28

Null hypothesis: All group means are the same
Alternative hypothesis: At least one group mean is different
SS = sum of

squares \quad| $\mathrm{SS}_{\text {total }}$ |
| :---: |
| $\sum_{i}\left(y_{i}-\hat{\mu}\right)^{2}=\sum_{i}\left(y_{i}-\hat{\mu}_{g_{i}}\right)^{2}+\sum_{i}\left(\hat{\mu}_{g_{i}}-\hat{\mu}\right)^{2}$ |

$$
\sum_{i}^{\mathrm{SS}_{\text {total }}\left(y_{i}-\hat{\mu}\right)^{2}=} \quad \underset{i}{\sum_{i}\left(y_{i}-\hat{\mu}_{g_{i}}\right)^{2}+\sum_{i}\left(\hat{\mu}_{g_{i}}-\hat{\mu}\right)^{2}}
$$

$\mathrm{DF}=$ degree of
freedom

$$
\left.\begin{array}{c}
\quad \mathrm{DF}_{\text {within }}=N-G, \quad \mathrm{MS}_{\text {within }}=\frac{\mathrm{SS}_{\text {within }}}{\mathrm{DF}_{\text {within }}}
\end{array} \begin{array}{r}
\mathrm{MS}=\text { mean } \\
\text { square }
\end{array}\right\}
$$

The null hypothesis, implies that: $F \sim \operatorname{FDist}\left(\mathrm{DF}_{\text {between }}, \mathrm{DF}_{\text {within }}\right)$

One-way ANOVA analyzes whether group means are significantly different

Mean \pm SD

Mean \pm SEM

	SOURCE OF VARIATION	SUM OF SQUARES	DF	MS	F RATIO
P VALUE					
Between groups	0.93	2	0.46	5.69	0.0039
	Within groups (resid.)	16.45	202	0.081	
$=$	Total	17.38	204		

This shows that the at least one group have significantly different mean. It does NOT, however, tell which means are different. If there are differences in means, post-hoc analysis are typically required to identify which groups are different.

Tukey's test analyzes which pairwise comparisons in a one-way ANOVA, if any, are significant.

Tukey's test automatically incorporates the necessary multiple hypothesis correction into the test of significance.

There are other ANOVA post-hoc tests as well.

Welcome to GraphPad Prism

Grouped tables have two grouping variables, one defined by columns and the other defined by rows

Data table:

Enter or import data into a new tableStart with sample data to follow a tutorial
Options:

Enter and plot a single Y value for each pointEnter $3 \quad \hat{\sim}$ replicate values in side-by-side subcolumnsEnter and plot error values already calculated elsewhere
ter: Mean, SD, N
Mean, SD, N

one－way＿anova．pzfx												
Q Search	Table format： Grouped		Group A			Group B			Group C			
v Data Tables＞			Nonrunners			Recreational runners			Elite runners			
\＃Data 1		\otimes	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean
\oplus New Data Table．．．	》 1	Title	0.52	0.25	88	0.38	0.32	89	0.4	0.26	28	
（i）Project info 1	2	Title										
¢ New Info．．．	3	Title										
－Results＞	》 4	Title										
New Analysis．．．	） 2	Title										
	6	Title										
welaph．．．	7	Title										
》	》 8	Title										
	9	Title										
	10	Title										
	11	Title										
	12	Title										
－	13	Title										
Family \gg	》 14	Title										
\＃Data 1	15											
\triangle Data 1	15	Tite										
	16	Title										
	17	Title										
	18	Title										
	19	Title										
	20	Title										
	21	Title										
	22	Title										
	23	Title										
	24	Title										
	25	Title										
	26	Title										
	27	Title										
$\square 4$－\downarrow－	［4）品	囲（1）	$\underline{\square}$	ata 1		\checkmark	－Row	Elite runn			Q	$\square{ }_{-}^{+}$

Data to analyze

Table: Data 1

Type of analysis

Which analysis?
V Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

XY analyses

V Column analyses
t tests (and nonparametric tests)
One-way ANOVA (and nonparametric)
One sample t and Wilcoxon test Descriptive statistics Normality and Lognormality Tests Frequency distribution
ROC Curve
Bland-Altman method comparison
Identify outliers
Analyze a stack of P values

- Grouped analyses
- Contingency table analyses

Analyze which data sets?
\checkmark A:NonrunnersB:Recreational runnersC:Elite runners

Experimental design

No matching or pairing
Each row represents matched, or repeated measures, data

固	Group A	Group B	Group C	Group D
	Data Set-A	Data Set-B	Data Set-C	Titte
	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}
1				
2				
3				

Assume Gaussian distribution?

- Yes. Use ANOVA.

No. Use nonparametric test.

Assume equal SDs?

- Yes. Use ordinary ANOVA test.No. Use Brown-Forsythe and Welch ANOVA tests.

Based on your choices (on all tabs), Prism will perform:

- Ordinary one-way ANOVA.

Parameters: One-Way ANOVA (and Nonparametric or Mixed)

Experimental Design	Repeated Measures	Multiple Comparisons	Options	Residuals

Followup tests

None.

Comp
mpare the mean of each column with the mean of every other column.
mpare the mean of each column with the mean of a control column.
ol column:

```
Group A: Nonrunners
```

Cd npare the means of preselected pairs of columns.

> Selected pairs: Select...Test for linear trend between column mean and left-to-right column order.

Which test?

Use choices on the Options tab to choose the test, and to set the defaults for future ANOVAs.

Parameters: One-Way ANOVA (and Nonparametric or Mixed)

Multiple comparisons test

- Correct for multiple comparisons using statistical hypothesis testing. Recommended.

Test: Tukey (recommended)Correct for multiple comparisons by controlling the False Discovery Rate.
Test: (Two-stage step-up method of Benjamini, Krieger and Yekutieli (recommended)Don't correct for multiple comparisons. Each comparison stands alone.
Test: Fisher's LSD test

Multiple comparisons options

Swap direction of comparisons ($\mathrm{A}-\mathrm{B}$) vs. ($\mathrm{B}-\mathrm{A}$).Report multiplicity adjusted P value for each comparison.
Each P value is adjusted to account for multiple comparisons.
Family-wise significance and confidence level: 0.05 (95% confidence interval)

Graphing

Graph confidence intervals.Graph ranks (nonparametric).Graph differences (repeated measures).
Additional resultsDescriptive statistics for each data set.Report comparison of models using AICc.Report goodness of fit

Output

Show this many significant digits (for everything except P values): $4 \hat{\imath}$
P value style: GP: $0.1234(\mathrm{~ns}), 0.0332\left({ }^{*}\right), 0.0021\left({ }^{* *}\right), 0.0002\left({ }^{* * *}\right),<0.0001\left({ }^{* *} \ldots \hat{*} \quad \mathrm{~N}=\mathrm{h} \hat{\imath}\right.$
Make options on this tab be the default for future One-Way ANOVAs.

?

囲 Data 1
\oplus New Data Table...
\checkmark Info
(i) Project info 1
\oplus New Info..
v Results

- Ordinary one-way ANOVA of Data 1
\oplus New Analysis...
- Graphs

\triangle Data 1

\oplus New Graph.

- Layouts
\oplus New Layout..

Family

囲 Data 1
\triangle Data 1
EData 1

Two-way ANOVA tests whether to see if there is an interaction between groups

Null model: $y_{i}=\beta_{0}+\epsilon_{i}$
Alternative model \#1: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
Alternative model \#2: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{12} x_{i 1} x_{i 2}+\epsilon_{i}$ interaction
term

Welcome to GraphPad Prism

NEW TABLE \& GRAPH
 XY
 Column

Grouped
Contingency
Survival
Parts of Whole
Multiple variables
Nested

EXISTING FILE
Open a File
LabArchives
Clone a Graph
Graph Portfolio

Grouped tables have two grouping variables, one defined by columns and the other defined

 by rows

Data table:

Enter or import data into a new tableStart with sample data to follow a tutorial
Options:

Enter and plot a single Y value for each pointEnter $7 \quad$ 乞 replicate values in side-by-side subcolumnsEnter and plot error values already calculated elsewhereEnter: Mean, SD, N

－two－way＿anova．pzfx																			
	Table format： Grouped		Group A							Group B									
			LM							C26									
\＃PPARa		\otimes	A：Y1	A：Y2	A：Y3	A：Y4	A：Y5	A：Y6	A：Y7	B：Y1	B：Y2	B：Y3	B：Y4	B：Y5	B：Y6	B：Y7			C：
\oplus New Data Table．．．	》 1	NF	0.896878	0.757779	1.209183	0.824336	1.311823			0.861320	0.868462	0.899686	1.307027	1.272415					
\oplus New Info．．．	2	KD	2.435268	2.045139	2.460515	1.472005	1.732875			1.119927	1.244879	1.509778	1.416881	1.819409	1.710366	1.470989			
－Results 》	》 3	Title																	
2way ANOVA of PPARa	4	Title																	
\oplus New Analysis．．． Graphs	\％ 5	Title																	
\triangle PPARa	6	Titie																	
\oplus New Graph．．．	7	Title																	
V Layouts 》	》 8	Title																	
\oplus New Layout．．．	9	Titie																	
	10	Title																	
	11	Title		－															
	12	Title																	
	13	Title																	
	14	Title																	
，	15	Title																	
Family	》 16	Title																	
\＃PPARa （ 2 way ANOVA	－ 17	Title																	
$\begin{array}{r} \quad \text { 2wa } \\ \triangle \text { PPARa } \end{array}$	18	Title																	
	19	Title																	
	20	Title																	
	21	Title																	
	22	Title																	
	23	Title																	
	24	Titte																	
	25	Title																	
	26	Title																	
	27	Title																	
	28	Title																	
	29	Title																	
	30	Title																	
	31	Title																	
$\square \square$－ 4	［ ${ }^{\text {a }}$	㖆（1）	吕以范	PPARa				－	－Row 2，							Q	－	－	＋

Data to analyze

Table: PPARa

Type of analysis

Which analysis?
v Transform, Normalize...
Transform
Transform concentrations (X)
Normalize
Prune rows
Remove baseline and column math
Transpose X and Y
Fraction of Total

- XY analyses
- Column analyses
v Grouped analyses
Two-way ANOVA (or mixed model)
Three-way ANOVA (or mixed model) Row means with SD or SEM Multiple t tests - one per row
- Contingency table analyses
- Survival analyses
- Parts of whole analyses

Multiple variable analyses

- Nested analyses
- Generate curve

Simulate data

Analyze which data sets?
A:LMB:C26

Parameters: Two-Way ANOVA (or Mixed Model)								
	RM Design	RM Analysis	Factor Names	Multiple Comparisons	Options	Residu		
Multiple comparisons test								
Correct for multiple comparisons using statistical hypothesis testing. Recommended.								
Test: Holm-Sidak (more power, but can't compute confidence intervals)								
Correct for multiple comparisons by controlling the False Discovery Rate.								
Test: Two-stage step-up method of Benjamini, Krieger and Yekutieli (recommended Don't correct for multiple comparisons. Each comparison stands alone.								
Test: Fisher's LSD test								
Multiple comparisons options								
\square Swap direction of comparisons ($\mathrm{A}-\mathrm{B}$) vs. (B-A).								
\checkmark Report multiplicity adjusted P value for each comparison.								
Each P value is adjusted to account for multiple comparisons.								
Family-wise significance and confidence level: 0.05								
Graphing options								
\square Graph confidence intervals.								
Additional results								
\square Narrative results.								
\square Show cell/row/column/grand predicted (LS) means.								
\square Report goodness of fit.								
Output								
Show this many significant digits (for everything except P values): $4 \hat{\sim}$								
P value style:		GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), $0.0002(* * *), ~<0.0001 ~(* * * *) ~_{\text {(}}$ (${ }^{(1)}$				$\mathrm{N}=6$		人
\square Make options on this tab be the default for future Two-Way ANOVAs.								
$?$						ancel		OK

Multiple hypothesis testing

The problem of multiple subgroups

https://xkcd.com/882/

Scenario:

we perform null hypothesis tests on K independent datasets, for each of which the null hypothesis is true.

Family-wise error rate:

Probability of having at least one false positives in multiple comparisons

$$
p(\mathrm{FP} \geq 1 \mid \text { null hypothesis })=1-\text { confidence }^{K}
$$

FWER for different number of comparisons given different significance levels:

	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 1}$	$\mathbf{2 8}$	$\mathbf{3 6}$	$\mathbf{4 5}$
$\mathbf{0 . 0 5}$	0.05	0.14	0.26	0.4	0.54	0.66	0.76	0.84	0.90
$\mathbf{0 . 0 1}$	0.01	0.03	0.06	0.1	0.14	0.19	0.25	0.30	0.36

Summary of multiple hypothesis correction techniques

Approach

No correction

Bonferroni /
Dunn-Sidak

False discovery rate (FDR)

What you control

α : if all null hypotheses are true, the fraction of tests that produce a significant result
α : if all null hypotheses are true, the chance of obtaining one or more significant results
Q : the fraction of all discoveries for which the null hypothesis is actually true

Expression

$$
\alpha=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}
$$

more significant results
$\alpha=p(\# \mathrm{FP}>0)$
$Q=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TP}}$

Bonferroni correction:

$$
\alpha_{\text {Bonferroni }}=\frac{\alpha}{K}
$$

Dunn-Sidak correction:

$$
\alpha_{D S}=1-(1-\alpha)^{1 / K}
$$

Dunn-Sidak is the exact solution; Bonferroni is an approximation

Example: differential expression (simulation)

$7,000 x$ from $p_{\text {null }}(x)$
$+3,000 x$ from $p_{\text {alt }}(x)$

First, convert data to p-values

use knowledge of $p_{\text {null }}(x)$ to compute a p-value for each datapoint

Benjamini-Hochberg procedure

Choose $\alpha_{\text {BH }}$ such to match the target False Discovery Rate (10\% here):

$$
\mathrm{FDR}=Q=\frac{\mathrm{FP}}{\mathrm{TP}+\mathrm{FP}}=\frac{\square}{\square+\square}
$$

Declare all P-values below α_{BH} as "discoveries".
"Most scientists are oblivious to the problems of multiplicities. Yet they are everywhere. In one or more of its forms, multiplicities are present in every statistical application. They may be out in the open or hidden. And even if they are out in the open, recognizing them is but the first step in a difficult process of inference. Problems of multiplicities are the most difficult that we statisticians face. They threaten the validity of every statistical conclusion."

multiple subgroups:

You perform tests on multiple subgroups of your data.
multiple ways to dichotomize:
You do pairwise comparisons between different combinations of subgroups.
multiple sample sizes:
You keep collecting data until you find $P<0.05$.
DO NOT DO THIS.
multiple ways to preprocess the data:
You analyze data preprocessed in multiple different ways.
multiple statistical tests:
You use different statistical tests on the same data before finding $P<0.05$.
multiple ways to select relevant variables:
You try to model your data using different subsets of possible variables.
multiple ways to analyze your data ("garden of forking paths"):
You try lots of qualitatively different analysis strategies.
outcome switching:
You change the quantity you care about after you've looked at the data.
multiple geographic areas:
E.g., you investigate a "cancer cluster" you hear about in the news.

Correcting for multiple comparisons is not always needed

Scenario 1

If readers can be reasonably expected to account for multiple comparisons on their own.

Scenario 2

Before looking at the data, you have clearly defined one outcome as primary and others as secondary.

Scenario 3:

You make only a few planned comparisons and your P-values are not marginal.

Scenario 4

A large fraction the tests you perform are significant.

Practical advice of avoiding multiple hypothesis pitfalls

$$
\text { Raise your standards: use } \alpha=0.01, \text { not } \alpha=0.05
$$

Separate exploratory data analysis from confirmatory data analysis.

Distinguish critical p-values from ancillary p-values.

Don't spend too much time analyzing a small dataset.

When generating small expensive datasets (e.g. mice), blind your experiments as best you can, and plan your analysis ahead of time

When in doubt, double-check your hypothesis with new data

Don't worry about informal multiple hypothesis testing when $P<10^{-4}$.

Questions?

