
Correlation 
Power analysis 
Analysis of variance (ANOVA) 
Multiple hypothesis testing

Biostatistics Course 2023 
Lecture 4 
Thursday, 27 July 2023 
1:00pm - 3:00pm



Correlation



Example: lipids and insulin sensitivity

Borkman et al. (1993) wanted to understand why 
insulin sensitivity varies so much among individuals. 
They hypothesized that the lipid composition of the 
cell membranes of skeletal muscle affects the 
sensitivity of the muscle for insulin.


They determined the insulin sensitivity of 
healthy men by infusing insulin at a standard rate 
(adjusting for size differences) and quantifying how 
much glucose they needed to infuse to maintain a 
constant a blood glucose level…


They also took a small muscle biopsy from each 
subject and measured its fatty acid composition. We’ll 
focus on the fraction of of polyunsaturated fatty acids 
that have between 20 and 22 carbon atoms 
(“fatty_acid”).

N = 13

sensitivity fatty_acid
s250 17.9

220 18.3
145 18.3
115 18.4
230 18.4
200 20.2
330 20.3
400 21.8
370 21.9
260 22.1
270 23.1
530 24.2
375 24



Correlation is used to describe relationships between real-numbered variables

pearson

N 13

r 0.77

95% CI [0.38, 0.93]

r2 0.593

P-val 0.00207701

summary statistics

- a measure of relatedness of two variables, X and Y 
- independent of measurement units 
- ranges between -1 and 1



Covariance and correlation are estimated from data in the familiar manner

The corresponding “correlation coefficient” is 



r =
̂cov(x, y)

̂σx ̂σy

Covariance is estimated in a manner similar to variance


̂cov(x, y) =
1

N − 1 ∑
i

(xi − ̂μx)(yi − ̂μy)

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

The formula for variance is


̂var (x) = σ2
x =

1
N − 1 ∑

i

(xi − ̂μx)2

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


This is what the correlation coefficient looks like

Pearson’s  ranges from -1 to 1. 


 implies independence or no relationship, i.e. .


 when the two variables share a deterministic linear relationship. 


 close to 1 implies nearly perfect positive dependence


 close to -1 implies nearly perfect negative dependence


Adding a constant to all  or all , or a multiplicative rescaling of all  or all , 
do not change .

r

r = 0 p(x, y) = p(x) ⋅ p(y)

r = ± 1

r

r

x y x y
r

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


This is what the correlation coefficient looks like

In the deterministic case,  is unaffected by the magnitude of the slope relating two 
variables, while the sign of  is equal to the sign of the slope.

r
r

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Sometimes  when two variables have a non-linear relationship.

Note that the correlation coefficient only captures linear relationships 
between two variables.

r = 0

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


Example: Quadratic Association



The coefficient of determination another name for r2

The coefficient of determination is simply , which is 
also often written as . 


 is always between 0 and 1 (inclusive)


Remember that , so beware of people 
reporting  instead of  to make a correlation seem 
stronger.


 is commonly interpreted as the fraction of variance 
in  explained by  (or the other way around).

r2

R2

r2

r2 ≤ |r |
r r2

r2

y x



Hypothesis testing

Null hypothesis is “no correlation between the variables”

H0 : ρ = 0

Alternative hypothesis is “there is a relationship between the variables”

Ha : ρ ≠ 0 (two-sided), or

Ha : ρ < 0 (one-sided less, or)

Ha : ρ > 0 (one-sided greater)

Test statistic is t-statistic that has a  under the null hypothesistn−2

t =
r n − 2

1 − r2



Hypothesis testing

Null hypothesis is “no correlation between the variables”

H0 : ρ = 0

Alternative hypothesis is “there is a relationship between the variables”

Ha : ρ ≠ 0 (two-sided), or

Ha : ρ < 0 (one-sided less, or)

Ha : ρ > 0 (one-sided greater)



Lots of different-looking datasets will have the same value for .r

“Anscombe’s quartet”:  for all 4 datasetsr = 0.816

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21.

https://en.wikipedia.org/wiki/Frank_Anscombe
https://en.wikipedia.org/wiki/American_Statistician


Assumptions underlying correlation

Interpreting the correlation coefficient , and especially the 
associated P-value, requires multiple assumptions:


• Each data point  is independently sampled from a 2D 
Gaussian distribution.


• In particular,  and  each follow a 1D Gaussian distribution


• All covariation between  and  is linear, with perfect 
concordance disrupted only by Gaussian noise. 

r

(x, y)

x y

x y



There are usually many explanations for why two variables might correlate

Possible reasons for a correlation between lipid levels and insulin sensitivity:


• The lipid content of membranes affects insulin sensitivity


• The insulin sensitivity affects membrane lipid content


• Both insulin sensitivity and lipid content are under the control of some third 
factor, such as a hormone.


• Lipid content, insulin sensitivity, and other factors are all part of a complex 
molecular/biochemical/physiological network, perhaps with positive and/or 
negative feedback components. The correlation observed is just a peak at a 
much more complex set of interdependent relationships. 


• Membrane lipid content and insulin sensitivity don’t actually correlate at all; 
the result is just a coincidence. 

Correlation is NOT causation!!!













Spearman’s rank correlation is a non-parametric measure of dependence

Spearman’s  is just Pearson’s  computed on the ranks of the  and  values 
which is a robust measure of correlation.

ρ r x y

x y

17.9 250

18.3 220

18.3 145

18.4 115

18.4 230

20.2 200

20.3 330

21.8 400

21.9 370

22.1 260

23.1 270

24.2 530

24.4 375

x rank y rank

1.0 6.0

2.5 4.0

2.5 2.0

4.5 1.0

4.5 5.0

6.0 3.0

7.0 9.0

8.0 12.0

9.0 10.0

10.0 7.0

11.0 8.0

12.0 13.0

13.0 11.0

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient




Power analysis



Statistical power is the probability of detecting an effect that actually does exist.

power:  
The probability of getting a statistically significant result if 

the null hypothesis actually is actually false. 

1. The sample size  

2. The false positive probability    (confidence = ) 

3. The false negative probability    (power =  ) 

4. The anticipated effect size

N

α 1 − α

β 1 − β

power analysis: 
The process of assigning and/or computing four quantities 

(sometimes more) that describe one’s experiment:

Motulsky, Ch. 20



Example: sex ratio

1. Confidence level: 


2. Number of birth records: 


3. Hypothesized effect size: 

1 − α = 95 %

N = 19500

|p(boy) − p(girl) | = 2 %

The key parameter is , so we use

,   
q = p(boy)

qnull = 50 % qalt = 51 %

4. We compute a statistical power of: 1 − β = 80 %

math



Statistical power example: sex ratio data

False Positive Probability: α = 0.05
False Negative Probability:  

(or 80% power)
β = 0.20

 effect size: 1.0%1
2

qnull qalt

N = 19500
threshold



Power analysis claims come in different forms

“Using  birth records, controlling the false positive rate at , and 
assuming a  effect size, our study will have  power.”

N = 19500 α = 5 %
2 % 1 − β = 80 %

“Controlling the false positive rate at , the statistical power at  
, and using  birth records, our study will be sensitive to 

an effect size of .”

α = 5 %
1 − β = 80 % N = 19500

2 %

“Controlling the false positive rate at , the statistical power at  
, and assuming an effect size of , our study will require using 

 birth records.”

α = 5 %
1 − β = 80 % 2 %
N = 19500

"Using  birth records, assuming an effect size of , and holding the 
statistical power to  , our study will be able to hold the false positive 
rate to .”

N = 19500 2 %
1 − β = 80 %

α = 5 %

There are four relevant parameters: , , , and effect size.N α β

Power analysis involves assuming values for any three parameters 
and computing the value of the forth



What if… 

What happens to the sample size if:


- SD increases


- Power increases


- Detectable difference decreases


- Level of significance decreases



You will most likely do one of these two things:

1. Assume a false positive rate of (standard)


2. Assume a power of (standard)

3. Assume what you consider to be a biologically 

significant effect size


4. Compute & use the required sample size .

α = 5 %
1 − β = 80 %

N

You are supposed to do this:

You’ll actually probably do this:

1. Assume a false positive rate of (standard).


2. Assume a power of (standard)


3. Assume a reasonable / affordable sample size 

4. Compute & report the detectable effect size.

α = 5 %
1 − β = 80 %

NIf the 
detectable 
effect size 
is too small



Power analysis example: body temperature

1. Assume a false positive rate of (standard).


2. Assume a power of (standard)

3. Assume what you consider to be a biologically 

significant effect size: .

α = 5 %
1 − β = 80 %

Δμ = 0.1 F

From preliminary data,  we know σ ≈ 0.7 F
The key parameter is the “normalized effect size”: 

Δμ
σ

4. Compute the required sample size: N = 1540
Too big!

Δμ = 0.2 F

N = 386
OK.



There are a number of online power analysis calculators

http://powerandsamplesize.com/

http://powerandsamplesize.com/






Analysis of variance (ANOVA)



Where we stand: to compare numerical data in multiple independent groups

Assumptions: 
- Errors should be random and 
independent 
- Normality 
- Homogeneity of variances

If assumptions violated, 
- Transform your data and see if 
they meet assumptions 
- If still violated, try non-
parametric approach (Kruskal-
Wallis test)



Fisher’s solution: ANOVA (Analysis of Variance)

• Idea: Instead of doing multiple pairs of comparisons, why don’t we do a single test?

◦ This test will tell us whether there is difference in any of the means.

◦ We do multiple comparisons between pairs only after we know there is difference 

in means across the groups. 
 

• Hypotheses:

◦ H0: All group means are the same. (H0: μ1= μ2 = … = μp)

◦ Ha: At least one group mean is different. 

 

• Process: 
◦ (p>α) fail to reject H0 → all group means are the same → No further investigation 

 

◦ (p<α) reject H0 → At least one group mean is different → Post-hoc analysis (i.e., 
pairwise comparison) to identify which group(s) mean(s) are significantly different.




One-way ANOVA example: hormone levels in runners

Hetland et al. (1993) investigated the level of luteinizing hormone (LH) in 
runners. Runners were classified into three groups: elite runners, recreational 
runners, and nonrunners.

GROUP LOG(LH) SD SEM N
nonrunners 0.52 0.25 0.027 88
recreational runners 0.38 0.32 0.034 89
elite runners 0.40 0.26 0.049 28



One-way ANOVA analyzes whether group means are significantly different

Null hypothesis: All group means are the same

Alternative hypothesis: At least one group mean is different

∑
i

(yi − ̂μ)2 = ∑
i

(yi − ̂μgi
)2 + ∑

i

( ̂μgi
− ̂μ)2

SStotal SSwithin SSbetween
 = sum of 

squares
SS



One-way ANOVA analyzes whether group means are significantly different

,    DFwithin = N − G MSwithin =
SSwithin

DFwithin

,    DFbetween = G − 1 MSbetween =
SSbetween

DFbetween

The corresponding F statistic is:   F =
MSbetween

MSwithin

∑
i

(yi − ̂μ)2 = ∑
i

(yi − ̂μgi
)2 + ∑

i

( ̂μgi
− ̂μ)2

SStotal SSwithin SSbetween

The null hypothesis, implies that:   F ∼ FDist(DFbetween, DFwithin)

 = mean 
square

MS = degree of 
freedom

DF

similar if null is true

 

if null is true

F ≈ 1



One-way ANOVA analyzes whether group means are significantly different

SOURCE OF VARIATION SUM OF SQUARES DF MS F RATIO P VALUE
Between groups 0.93 2 0.46 5.69 0.0039

- Within groups (resid.) 16.45 202 0.081
= Total 17.38 204

This shows that the at least one group have significantly different mean.  
It does NOT, however, tell which means are different. If there are differences in 
means, post-hoc analysis are typically required to identify which groups are different.



Tukey’s test analyzes which pairwise comparisons in a one-way ANOVA, if any, 
are significant. 

Tukey's test automatically incorporates the necessary multiple hypothesis 
correction into the test of significance.


There are other ANOVA post-hoc tests as well.

























Two-way ANOVA tests whether to see if there is an interaction between groups

PPARa mRNA expression


cancer presence (C26=tumor, LM=litter mate)


food (NF=normal, KD=ketogenic)

yi =

xi1 =

xi2 =

Null model: 


Alternative model #1: 


Alternative model #2: 

yi = β0 + ϵi

yi = β0 + β1xi1 + β2xi2 + ϵi

yi = β0 + β1xi1 + β2xi2 + β12xi1xi2 + ϵi
interaction


term

NF KD
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(data curtsey of Tobias Janowitz)



















Multiple hypothesis testing



The problem of multiple subgroups

https://xkcd.com/882/

https://xkcd.com/882/


The family-wise error rate increases rapidly with the number of tests performed

Scenario:  
we perform null hypothesis tests on  independent datasets, for each of 

which the null hypothesis is true. 
K

Family-wise error rate:  
Probability of having at least one false positives in multiple comparisons

p(FP ≥ 1 |null hypothesis) = 1 − confidenceK

FWER for different number of comparisons given different significance levels:



False discovery rate 
(FDR)

: the fraction of all discoveries 
for which the null hypothesis is 

actually true

Q Q =
FP

FP + TP

Summary of multiple hypothesis correction techniques

Approach

Lucas et al. (2005)

What you control Expression

Bonferroni /  
Dunn-Sidak : if all null hypotheses are true, 

the chance of obtaining one or 
more significant results

α α = p(#FP > 0)

No correction : if all null hypotheses are true, 
the fraction of tests that 

produce a significant result

α α =
FP

FP + TN



Simple ways to counteract the multiple hypothesis problem

Bonferroni correction:  

  αBonferroni =
α
K

Dunn-Sidak correction:   

  αDS = 1 − (1 − α)1/K

Dunn-Sidak is the exact solution; Bonferroni is an approximation



Example: differential expression (simulation)

7,000 s from  
+ 3,000 s from 

x pnull(x)
x palt(x)



First, convert data to p-values

use knowledge of  to  
compute a p-value for each datapoint

pnull(x)



Benjamini–Hochberg procedure

Declare all P-values below  as “discoveries”.αBH

Choose  such to match the target False Discovery Rate (10% here):αBH

FDR = Q =
FP

TP + FP
= +



Multiple comparisons are ubiquitous and insidious

“Most scientists are oblivious to the problems of multiplicities. Yet they are 
everywhere. In one or more of its forms, multiplicities are present in every 
statistical application. They may be out in the open or hidden. And even if 
they are out in the open, recognizing them is but the first step in a difficult 
process of inference. Problems of multiplicities are the most difficult that we 
statisticians face. They threaten the validity of every statistical conclusion.”

from Berry (2007, p. 155), in Motulsky, Ch. 23



Multiple comparisons arise in many many contexts

multiple sample sizes:  
You keep collecting data until you find .P < 0.05

multiple subgroups:  
You perform tests on multiple subgroups of your data.

multiple ways to preprocess the data:  
You analyze data preprocessed in multiple different ways.

multiple statistical tests:  
You use different statistical tests on the same data before finding .P < 0.05

Motulsky, Ch. 23

multiple ways to dichotomize:  
You do pairwise comparisons between different combinations of subgroups.

DO NOT DO THIS.



Multiple comparisons arise in many, many contexts

outcome switching:  
You change the quantity you care about after you’ve looked at the data.

multiple geographic areas:  
E.g., you investigate a “cancer cluster” you hear about in the news.

Motulsky, Ch. 23

multiple ways to analyze your data (“garden of forking paths”):  
You try lots of qualitatively different analysis strategies.

multiple ways to select relevant variables:  
You try to model your data using different subsets of possible variables.



Correcting for multiple comparisons is not always needed

Scenario 1:  
If readers can be reasonably expected to account for multiple 

comparisons on their own.

Scenario 2:  
Before looking at the data, you have clearly defined one outcome as 

primary and others as secondary.

Scenario 3:  
You make only a few planned comparisons and your P-values are not marginal.

Scenario 4:  
A large fraction the tests you perform are significant.

Motulsky, Ch. 19



Practical advice of avoiding multiple hypothesis pitfalls

Separate exploratory data analysis from confirmatory data analysis.

Don’t worry about informal multiple hypothesis testing when  .P < 10−4

Raise your standards: use , not . α = 0.01 α = 0.05

Distinguish critical p-values from ancillary p-values.

When in doubt, double-check your hypothesis with new data

When generating small expensive datasets (e.g. mice), blind your 
experiments as best you can, and plan your analysis ahead of time

Don’t spend too much time analyzing a small dataset.



Questions?


