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A deluge of data is transforming science and indus-
try. Many hope that this massive flux of informa-
tion will reveal new vistas of insight and

understanding, but extracting knowledge from Big Data
requires appropriate statistical tools. Often, very little can
be assumed about the types of patterns lurking in large
data sets. In these cases it is important to use statistical
methods that do not make strong assumptions about the
relationships one hopes to identify and measure. 

In this tutorial we consider
the specific problem of quanti-
fying how strongly two vari-
ables depend on one another.
Even for data sets containing
thousands of different variables,
assessing such pairwise relation-
ships remains an important
analysis task. Yet despite the
simplicity of this problem and
how frequently it is encoun-
tered in practice, the best way
of actually answering it has not
been settled. 

One standard approach is to
compute the Pearson correla-
tion coefficient. Unfortunately,
Pearson correlation has severe limitations.  First, it only
applies to variables that are continuous real numbers; it
cannot be used when either variable represents a discrete
category, such as gender. Second, the assumptions under-
lying Pearson correlation are violated by relationships that
are nonlinear or have many outliers. Such violations can
result in correlation values that conflict with more intu-
itive notions of dependence. 

A more general way of quantifying statistical depend-
encies comes from the field of information theory. This
branch of mathematics arose from a classic 1948 paper by
Claude Shannon titled “A Mathematical Theory of Com-

munication.” Although Shan-
non’s immediate purpose was to
describe information transmission
in telecommunications systems, his work illuminated deep
truths that have since had a profound impact on fields as
diverse as engineering, physics, neuroscience, and statistics. 

Shannon argued that the concept of “information” can
be formalized by a mathematical quantity now known as
“mutual information.” Mutual information quantifies the

amount of information that the value of one variable re-
veals about the value of another variable. It is measured
in units called “bits:” A value of zero corresponds to no
dependence whatsoever, while larger values correspond
to stronger relationships.

Importantly, mutual information retains its fundamen-
tal meaning regardless of how nonlinear a relationship is.
Mutual information can also be computed between vari-
ables of any type, be they continuous or discrete. Some
hypothetical relationships illustrating this are shown in
the accompanying figure.  

Computing mutual information from data is compli-
cated, however, by the difficulty of estimating a
continuous probability distribution from a lim-
ited number of samples. Fortunately, there are al-
gorithms that can solve this problem well enough
for many practical purposes, and estimating mu-
tual information becomes easier the more meas-
urements one has.

Mutual information therefore provides a sen-
sible alternative to Pearson correlation in many
Big Data settings. As better ways of estimating
mutual information are developed, this impor-
tant concept from information theory is likely to
become increasingly useful in data analysis ef-
forts, both in science and in industry.   nn
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Data from three hypothetical relationships with corresponding mutual information values shown.
Mutual information can quantify dependencies regardless of whether one or both of the variables
in question are continuous numbers (e.g., a person’s height and weight) or discrete categories (e.g.,
a person’s gender or after-dinner food preferences).


