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Linear regression



Linear regression seeks to explain  as a linear function of  plus Gaussian noisey x

yi = a + bxi + ϵi

: y-intercept

: slope

: the “residuals”

a
b
ϵi



Parameters are chosen to minimize the sum of squared deviations

yi = a + bxi + ϵi

The model “parameters”,  and , are chosen to minimize this quantity: .a b ∑
i

ϵ2
i

This can be done mathematically, and one finds that,


     and     
b = r
̂σy

̂σx
a = ̂μy − b ̂μx



Some properties of linear regression

The center of mass point of the data, , lies on the regression line.
( ̂μx, ̂μy)

Confidence intervals (shaded region) are curved because of uncertainty in both  and .
a b

Any reported P-values correspond to the null hypothesis that .
b = 0



Linear regression explains a fraction of the variance

total: 100% of variance

residual: 
40.7% of variance

model:  
59.3% of variance



Linear regression explains a fraction of the variance

model: ̂yi = a + bxi

variance: 
(n − 1) ×

∑
i

(yi − ̂μy)2 = ∑
i

(yi − ̂yi)2 + ∑
i

( ̂yi − ̂μy)2

total:  
100%

residual: 
40.7%

model:  
59.3%

 is the fraction of variance explained: 


 = 0.593

r2

r2 =
∑i ( ̂yi − ̂μy)2

∑i (yi − ̂μy)2













Linear regression assumptions

• The model is correct, i.e. the expected value for  is indeed a 
linear function of  for some correct choice of parameters. 


• The noise (i.e. the residuals) is Gaussian and has mean zero.


• The residual for each data point is statistically independent


• The magnitude of the noise (i.e. variance of the Gaussian) is the 
same at all  values.


• Each  is known exactly.

y
x

x

xi



As with correlation, many different-looking datasets can have exactly the same 
regression line

Anscombe’s quartet

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21.

https://en.wikipedia.org/wiki/Frank_Anscombe
https://en.wikipedia.org/wiki/American_Statistician


Beware of combining distinct groups into one

Combining two groups into one regression can mislead 
by creating a strong linear relationship. 

Combining two groups into one regression can mislead by hiding a trend. 



Beware of reading too much into a regression result

Don’t trust regression results 
that you can’t verify by eye

Don’t over-extrapolate



Nonlinear regression



Example: effect of norepinephrine on muscle relaxation

log10_conc pct_relaxation

-8.0 2.6

-7.5 10.5

-7.0 15.8

-6.5 21.1

-6.0 36.8

-5.5 57.9

-5.0 73.7

-4.5 89.5

-4.0 94.7

-3.5 100.0

-3.0 100.0

Frazier et al (2006) measured the degree to 
which the neurotransmitter norepinephrine 
relaxes bladder muscle in rats. 


Strips of bladder muscle were exposed to 
various concentrations of norepinephrine, and 
percent muscle relaxation was measured.


The data from each rat was analyzed to 
determine the maximum relaxation and the 
concentration of norepinephrine that relaxes the 
muscle half that much (C50)



f(x) = bottom +
top − bottom

1 + 10(logC50−x)⋅hillSlope

Example: effect of norepinephrine on muscle relaxation

:  concentration (in )


: percent muscle relaxation


x log10 M

y
log10_conc pct_relaxation

-8.0 2.6

-7.5 10.5

-7.0 15.8

-6.5 21.1

-6.0 36.8

-5.5 57.9

-5.0 73.7

-4.5 89.5

-4.0 94.7

-3.5 100.0

-3.0 100.0

top

bottom

logC50

hillSlope











y = Bottom +
Top − Bottom

1 + 10(LogIC50−x)⋅HillSlope

4 parameters: , , ,  Bottom Top LogIC50 HillSlope



y = Bottom +
Top − Bottom

1 + 10(LogIC50−x)⋅HillSlope

4 parameters: , , ,  Bottom Top LogIC50 HillSlope



Multiple linear regression and logistic regression



Multiple linear regression is used to model a continuous number that depends 
on multiple covariates

The key assumption is that each dependent variable  is related to the 
corresponding independent variables via





where the residual  is due to random Gaussian noise.

yi

yi = β0 + β1xi1 + β2xi2 + ⋯ + βDxiD + ϵi

ϵi

Multiple linear regression (often just called “linear regression”) is used to 
model data where each data point  consist of an independent variable 

, which is a -dimensional vector, and a dependent 
variable , which is a single number. Often the entries of the vector  are 
called “covariates”.

( ⃗xi, yi)
⃗xi = (xi1, xi2, …, xiD) D

yi ⃗xi

The covariants that define  are often a mixture of continuous and binary 
variables. 

⃗x



Logistic regression is used to model probabilities that depend on multiple 
covariates

Logistic regression is used to model data where each data point  
consists of a vector  that represents  covariants, and 
one dependent variable  that is binary.

( ⃗xi, yi)
⃗xi = (xi1, xi2, …, xiD) D

yi

The key assumption is that the log odds of  is a linear function of :
yi ⃗xi

log Oddsi = log [ p(yi = 1 | ⃗xi)
p(yi = 0 | ⃗xi) ] = β0 + β1xi1 + β2xi2 + ⋯ + βDxiD

Again, the covariants that define  are often a mixture of continuous and 
binary variables. 

⃗x

Note that there is no need for a “residual” contribution since the model is 
inherently probabilistic. 





Survival analysis



The Survival function S(t)

Uppercase  indicates the time of an individual’s death. This is a random 
variable that changes from individual to individual. Alternatively,  can be 
the time of some other event an individual can experience once and only 
once. Not all individuals under study need to experience this event. 


Lowercase  denotes a time value that we wish to inquire about; it is not 
specific to any individual.


The survival function  is the probability of survival to time , i.e.


 


Here are some properties of the survival function:


1.    (by convention)


2.    at all times 


3.  is a non-increasing function of 

T
T

t

S(t) t

S(t) = p(T > t)

S(0) = 1

0 ≤ S(t) ≤ 1 t

S(t) t



The hazard function h(t)

The hazard function  is the probability of death per unit time (i.e. death 
rate) at time , given that a subject has already survived up until time . 


The hazard function and the survival function are related to each other via


     and     .


The cumulative hazard function  is the integral of the hazard function:


,


which is related to the survival function via .

h(t)
t t

S(t) = exp (−∫
t

0
dt′￼h(t′￼)) h(t) = −

d
dt

log S(t)

H(t)

H(t) = ∫
t

0
dt′￼ h(t′￼)

S(t) = e−H(t)



Estimating the survival function: no censoring

The survival function is usually the primary thing we are interested in estimating 
from data. Suppose we have  individuals who are all alive at time . 
Further assume that we observe all death events that do occur. We can then 
estimate  quite simply as the fraction of these individuals who remain alive at 
time 





where  is the number of subjects alive at time .

n t = 0

S(t)
t .

̂S(t) =
n(t)
n(0)

n(t) t



Right censoring

time t

, T1 E1 = 1

study endsstudy starts

, T2 E2 = 0

Survival data is “right-censored” when we know that an individual  survived up to time 
, but after that we loose track of that individual. 


Censoring is usually indicated by an event flag  that is 1 if the event is observed or 0 
if the event is censored.

i
Ti

Ei



Censoring occurs for many different reasons

Censoring can occur for many different reasons.


1. Subjects enroll in a clinical trial on a rolling basis, and survival time is computed 
from the date of enrollment. When the trial ends, the subjects how still survive will 
have survived for different periods of time.


2. Subjects in a clinical trial leave because they don’t want to participate anymore, they 
require protocol-breaking treatment, or they are lost to follow-up.


3. In an animal study, animals become available for experimentation at different times.


4. An animal in a study is subject to some unexpected mishap (lost, etc.)


Do not throw away censored data! This will invalidate your entire analysis. 



The Kaplan-Meier estimator is the standard way to estimate survival curves

Let . , be the times, in increasing order at which 
individuals either die or are censored. We allow for multiple individuals 
dying and/or being censored at the same time.

T1, T2, …, TK

The Kaplan-Meier estimate  for the survival curve is given by:


. 

̂S(t)

̂S(t) = ∏
i : Ti<t

ni − di

ni

Let  denote the number of individuals at risk at time .ni Ti

Let  denote the number of individuals that actually die at time . di Ti



Use the log-rank test to compare two survival curves

 

The log-rank test is (also called the Mantel-Cox test) is the standard 
test used to compare survival curves for two distinct groups


Null hypothesis: the two populations are governed by the same 
survival curve and hazard rate


How it works: computes a summary statistic that quantifies how 
evenly distributed deaths are across the populations in question. 
Under the null hypothesis, this statistic approximately follows a  
distribution with 1 degree of freedom.

χ2

https://lifelines.readthedocs.io/en/latest/lifelines.statistics.html#lifelines.statistics.logrank_test


https://clinicaltrials.gov/ct2/show/NCT00003855

https://clinicaltrials.gov/ct2/show/NCT00003855
https://clinicaltrials.gov/ct2/show/NCT00003855




(data curtsey of Tobias Janowitz)











The Cox proportional hazards model is the most common way to analyze how 
different variables influence survival

The Cox proportional hazards model assumes that subjects are 
governed by a hazards function that has the following form.



hi(t) = h0(t) × exp [β1xi1 + β2xi2 + ⋯ + βDxiD]

Suppose that each individual  has, in addition to an event time  and 
event flag, has a set of  covariants , which can be 
either real numbers or binary.

i ti
D xi1, xi2, …, xiD

Each coefficient  is the “effect size” for the corresponding covariate . 
If the value for  is significantly different than 0, it means that the 
covariate  effects survival. 

βj x⋅j
βj

x⋅j



Example: Rossi recidivism dataset

 

https://lifelines.readthedocs.io/en/latest/lifelines.datasets.html#lifelines.datasets.load_rossi

https://www.rdocumentation.org/packages/RcmdrPlugin.survival/versions/1.2-0/topics/Rossi
https://lifelines.readthedocs.io/en/latest/lifelines.datasets.html#lifelines.datasets.load_rossi


Example: Rossi recidivism dataset

 

https://rdrr.io/cran/RcmdrPlugin.survival/man/Rossi.html

https://www.rdocumentation.org/packages/RcmdrPlugin.survival/versions/1.2-0/topics/Rossi
https://rdrr.io/cran/RcmdrPlugin.survival/man/Rossi.html


Example: Rossi recidivism dataset

week: survival time

arrest: 1 if arrested (event), 0 if not arrested (censored)



The results of Cox Regression is a statement about the effect size and 
significance of each variable

effect size 
(hazard)

statistical 
significance



Likelihood ratio test

The likelihood ratio test is an extremely general way of comparing 
two models. It is an approximate test, though, valid only in the 
large data regime.


Likelihood ratio test uses a statistic given by:


 


Under the null hypothesis,  follows a chi square distribution 
where the number of degrees of freedom is:





It tests the necessity of all parameters; it does not say whether 
individual parameters are required.

χ2 = 2 log ( Likelihoodalt

Likelihoodnull )
χ2

DOF = (# alt model parameters) − (# null model parameters)



10:00a - 12:00p. Finished right on time, though rather rushed at the end.


