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Example 1: Human Sex Ratio



Computing sex ratio of humans is one of the oldest applications of statistics

https://www.openintro.org/stat/data/?data=arbuthnot

Arbuthnott J (1711). An Argument for Divine Providence, taken from 
the Constant Regularity observed in the Births of both Sexes. 

…

year male female
1629 5218 4683
1630 4858 4457
1631 4422 4102
1632 4994 4590
1633 5158 4839
1634 5035 4820
1635 5106 4928
1636 4917 4605
1637 4703 4457

https://www.openintro.org/stat/data/?data=arbuthnot










Restoration (1660) Great Fire (1666) Great Storm (1703)

Births in London, 1629-1710

English Civil Wars (1642-51)



Example 2: A biased coin



Biased coins are modeled using a Bernoulli distribution, which describes 
probabilities for a binary variable 

60%40%



Making a biased coin

Mike Izbicki (Claremont McKenna College)
https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html

p(heads) ≈ 60 %

https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html


The number of heads after 100 flips of the biased coin will resemble the 
underlying probabilities, but will not match exactly

How much deviation from the expected values do we expect?

expected: 60 heads, 40 tails

observed: 62 heads, 38 tails



There is substantial variation across replicates. This is to be expected.

Results from 1000 simulations, 100 flips per simulation



The variation in the number of heads from replicate to replicate is described by a 
binomial distribution

mean

mean = 60

std

standard deviation (std) = 4.9

Results from 1000 simulations, 100 flips per simulation



Can we determine whether or not a coin is biased by flipping it 100 times?

Suppose we flip a coin 100 times and observe 62 heads (and 38 tails).

Null hypothesis: heads and tails are equally likely, i.e.

p(heads) = 50 %

Alternative hypothesis: heads and tails are not equally likely, i.e.

p(heads) ≠ 50 %

Our observation (62 heads) may or may not allow us to reject the null hypothesis 
and thus accept the alternative hypothesis.

No amount of data, however, can cause us to accept the null hypothesis.











The null hypothesis is assessed by where the data fall within the null distribution



We reject the null hypothesis of the data fall too far away from the bulk of the 
distribution

We can therefore reject the null hypothesis with 95% confidence.

Our assumed dataset (62 heads) lies outside the central 95%.

our

data

If the null hypothesis is true, data should fall within the green region 95% of the time, 
and within the red “reject” region 5% of the time.

central

95%



P-values quantify the probability of data being as or more extreme than the data 
in hand were the null hypothesis true.

our

data

The P-value threshold of 0.05 comes from adopting a confidence threshold of 95%.

central

95%

We find that p=0.0210 for the two-sided test.

 We therefore say that our result is “statistically significant”



P-values quantify the probability of data being as or more extreme than the data 
in hand were the null hypothesis true.

our

data

A one-sided hypothesis test only considers one side of the distribution.

lower

95%

We find that p=0.0105 for the one-sided test.

Unless you have good reason to do otherwise, use two-sided tests. 

In general, two-sided tests are more conservative than one-sided tests.



Confidence intervals (CIs) are more informative than P-values

95% CI

null hypothesis

is outside CI

We conclude that  lies within [52.5%, 71.5%] with 95% confidence.


We can reject the null hypothesis because it lies outside this confidence interval.

p(heads)



P-values have multiple pitfalls

• “Statistically significant” does not actually mean “significant” in the normal sense. 
At best, it means “detectable”.


• P-values do not say how big an observed effect is.


• P-values do not say how important that observed effect is.


• P-values calculations rely on assumptions, and violation of any of those 
assumptions can render P-values meaningless.


• Perhaps most severe is the fact that P-values do not actually quantify you how 
likely or unlikely your null hypothesis is!



Why are Confidence Intervals better than P-values?

• Like a P-value, a CI communicates statistical significance (i.e. detectability).


• A CI also communicates effect size, as well as the uncertainty in that effect size.


• A 95% CI does not actually mean that the true value of a parameter lies within that 
interval with 95% probability. Still, this (extremely common) misinterpretation is 
largely benign compared to the misinterpretation of P-values. 


• However, P-values are more commonly reported than confidence intervals. 



The perils of null hypothesis testing



Summary of null hypothesis testing 

Step 1: Specify a null hypothesis.

Step 3: Identify the appropriate statistical test

Step 2: Specify a confidence level (usually 95%)

Result:  P-value summarizing how unlikely the data is compared to 
null hypothesis expectations.

Then: 
 evaluate on data



Perhaps most problematic is how easily P-values are misinterpreted.

Roughly speaking, P-values quantify how likely our data would be if the null 
hypothesis were true.


p(data |null hypothesis)

P-values do not quantify the probability of the null hypothesis given our data. 
Unfortunately, this is the quantity that we actually care about.


p(null hypothesis |data)



My opinion: the use of P-values to reject hypotheses is predicated on the base 
rate fallacy

By convention P < 0.05, then one rejects null hypothesis, supposedly because 
 is small.p(null hypothesis |data)

For this to make sense, one has to accept the base rate fallacy, i.e., 

 p(data |null hypothesis) ≈ p(null hypothesis |data)

Whether or not this is true in a specific case depends on the prior odds, 

, 

which Frequentist statistics refuses to consider.

p(null hypothesis)



The misinterpretation of P-values reflects the Frequentist / Bayesian divide

Frequentist statistics (a.k.a. classical statistics) focuses on likelihood: 

.p(data |hypothesis)

Iron Law of Frequentist Statistics:  
Never compute the probability of a hypothesis.

Bayesian statistics focuses on computing posterior probabilities: 

.p(hypothesis |data)



Example 3: Supernova detection machine



Exercise: supernova

https://xkcd.com/1132/

https://xkcd.com/1132/


Exercise: supernova

https://xkcd.com/1132/

Bayes’s theorem (from yesterday): 

 
p(nova+ |detector+)
p(nova− |detector+)

=
p(detector+ |nova+)
p(detector+ |nova−)

×
p(nova+)
p(nova−)

[ 35/36
1/36

= 35]
If our prior belief is that a supernova is very unlikely, i.e. 

, 

then we still shouldn’t believe the sun has gone nova.

p(nova+)
p(nova−)

≪
1

35

P value = p(detector+ |nova−) =
1
36

= 0.028 < 0.05

Even though, with a null hypothesis of , nova−

https://xkcd.com/1132/


Example 4: Mendel’s Peas



https://ib.bioninja.com.au/standard-level/topic-3-genetics/34-inheritance/mendels-laws.html

3/4 3/4

1/4 1/4

https://ib.bioninja.com.au/standard-level/topic-3-genetics/34-inheritance/mendels-laws.html


Chi square test (known proportions)

Null Hypothesis:  
observations in  different categories occur in the expected proportionsK = 4

Data:  number of observations in each category 

observed expected 
proportion

expected

counts

Round & yellow 315 9/16 312.75
Round & green 108 3/16 104.25
Angular & yellow 101 3/16 104.25
Angular & green 32 1/16 34.75
Total 556 16/16 556.00

Statistic:  χ2 = ∑
(observed − expected)2

expected

Null distribution: Chi square distribution with  degrees of freedom (DOF) K − 1 = 3

Example: Mendel’s peas





enter 
manually



data fits 
expectations



Example 4: Human sex ratio in London over time



Restoration (1660) Great Fire (1666) Great Storm (1703)

Is it possible that the boy/girl ratio changes from year to year?

English Civil Wars (1642-51)



Chi square test (unknown proportions)

male female

1629 5218 4683

1630 4858 4457

1631 4422 4102

1632 4994 4590

1633 5158 4839

1634 5035 4820

1635 5106 4928

1636 4917 4605

1637 4703 4457

1638 5359 4952

ye
ar

sex

Statistic:  

 χ2 = ∑
(observed − expected)2

expected

Null distribution:  
Chi square distribution with  

 
where 

 = number of possible values for  
 = number of possible values or 

DOF = nm − m − n + 1

m A
n B

Null Hypothesis:  
Two multi-category variables  and    

are independent, i.e., 
A B

p(A, B) = p(A) ⋅ p(B)










