
Gaussian distributions QQ plots t-tests Comparing two datasets

Biostatistics Course 2024 Lecture 3 Wednesday, 10 July 2024 10:00am - 12:00pm **Gaussian distributions**

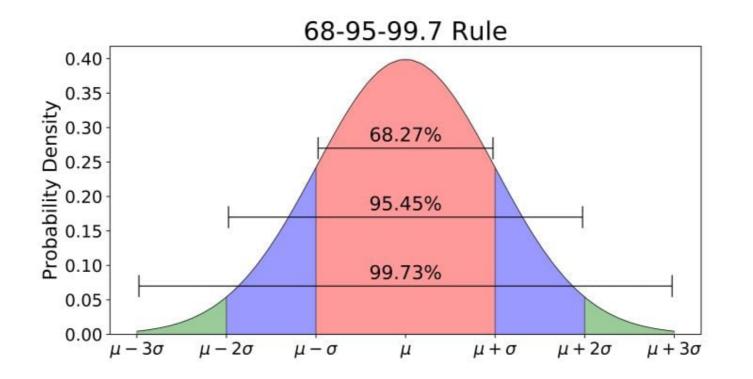
"Gaussian distribution" = "normal distribution"

Let X ~ N(μ , σ^2)

- Mean: $E[X] = \mu$
- Variance: $Var[X] = \sigma^2$
- Standard Deviation: $SD_X = \sigma$

Let

$$Z = (Y - \mu)/\sigma$$

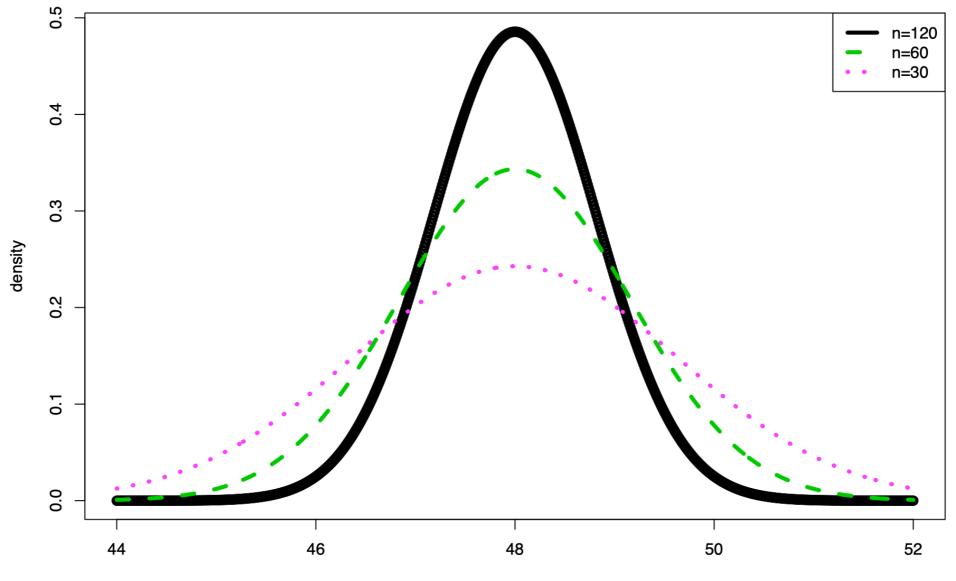

$$E[Z] = E\left[\frac{Y-\mu}{\sigma}\right] = \frac{1}{\sigma}E[Y-\mu]$$
$$= \frac{1}{\sigma}(E[Y]-\mu]$$
$$= \frac{1}{\sigma}(\mu-\mu)$$
$$= 0$$

$$Var[Z] = Var\left[\frac{Y - \mu}{\sigma}\right]$$
$$= \frac{1}{\sigma^2} Var[Y - \mu]$$
$$= \frac{1}{\sigma^2} Var[Y]$$
$$= \frac{1}{\sigma^2} \sigma^2$$
$$= 1$$

NOTE: $\mu = 0$ and $\sigma^2 = 1$ for **any** standardized random variable

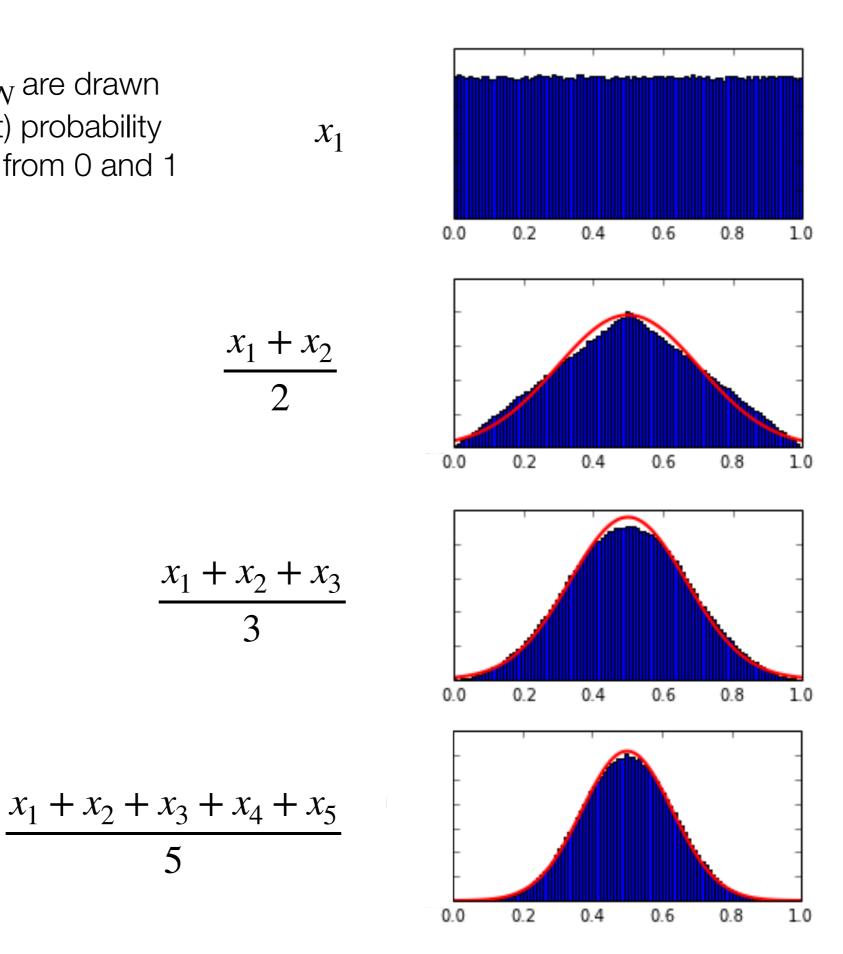
Recall the 68-95-99.7 rule Note for a standard normal random variable, $Z \sim N(0, 1)$

$Pr(-1 < Z < 1) \approx 0.68$ $Pr(-2 < Z < 2) \approx 0.95$ $Pr(-3 < Z < 3) \approx 0.997$


If a random variable X has population mean μ and population variance σ^2 , the sample mean X-bar, based on n observations, is approximately normally distributed with mean μ and variance σ^2 , for sufficiently large n.

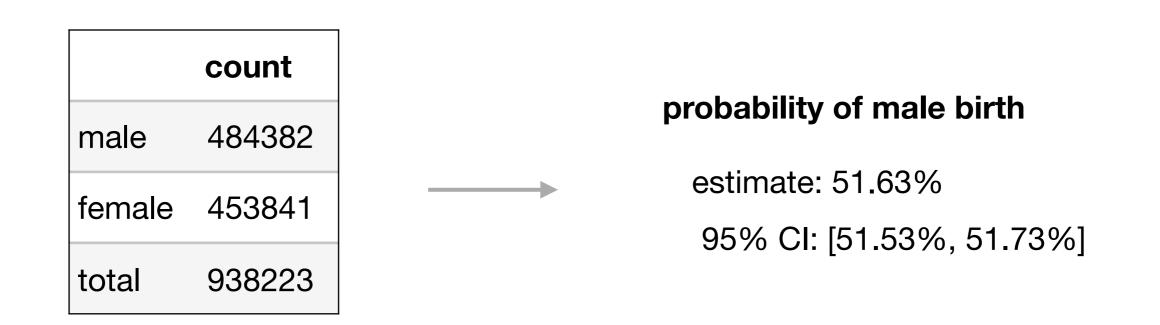
$$\begin{aligned} x_1 &\sim p_1(x) \\ x_2 &\sim p_2(x) \\ & \cdots \\ x_N &\sim p_N(x) \end{aligned} \qquad \bar{x} = \frac{x_1 + x_2 + \cdots + x_N}{N} \qquad \bar{x} \sim \operatorname{Normal}(\mu, \sigma^2) \end{aligned}$$

This means that, if many sources additively contribute to an experimental measurement, independent measurements will be approximately normally distributed.


This is why statisticians so often assume that experimental measurements follow normal distributions.

Sample 1 (n=30); sample 2 (n=60); sample 3 (n=120)

sample means


Suppose x_1, x_2, \dots, x_N are drawn from a uniform (i.e. flat) probability distribution that stands from 0 and 1

5

Example 1: Human Sex Ratio

The human sex ratio at birth is slightly skewed towards boys rather than girls.

Arbuthnot J (1711). An Argument for Divine Providence, taken from the Constant Regularity observed in the Births of both Sexes.

We assume the number of male babies (versus female babies) is drawn from a binomial distribution

data

n = 484,382: number of male births

N = 938,223: total number of births

model

 $n \sim \operatorname{Binom}(q, N)$

q: probity of a male birth

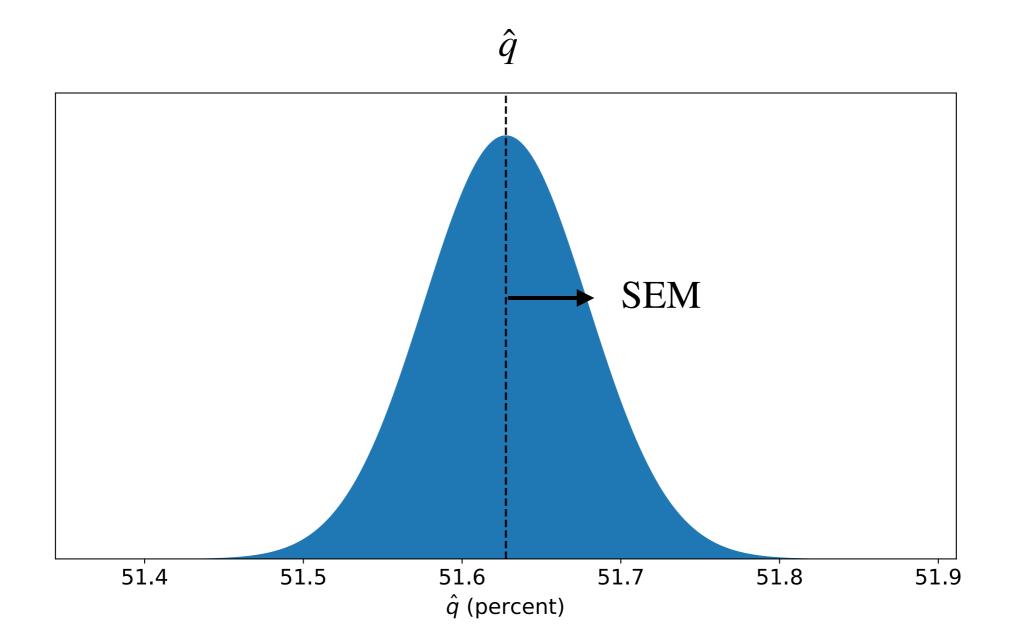
The assume probability distribution is called the <u>sampling distribution</u>

goals

1. Compute a <u>best estimate</u> \hat{q} for q

2. Compute a <u>confidence interval</u> for q

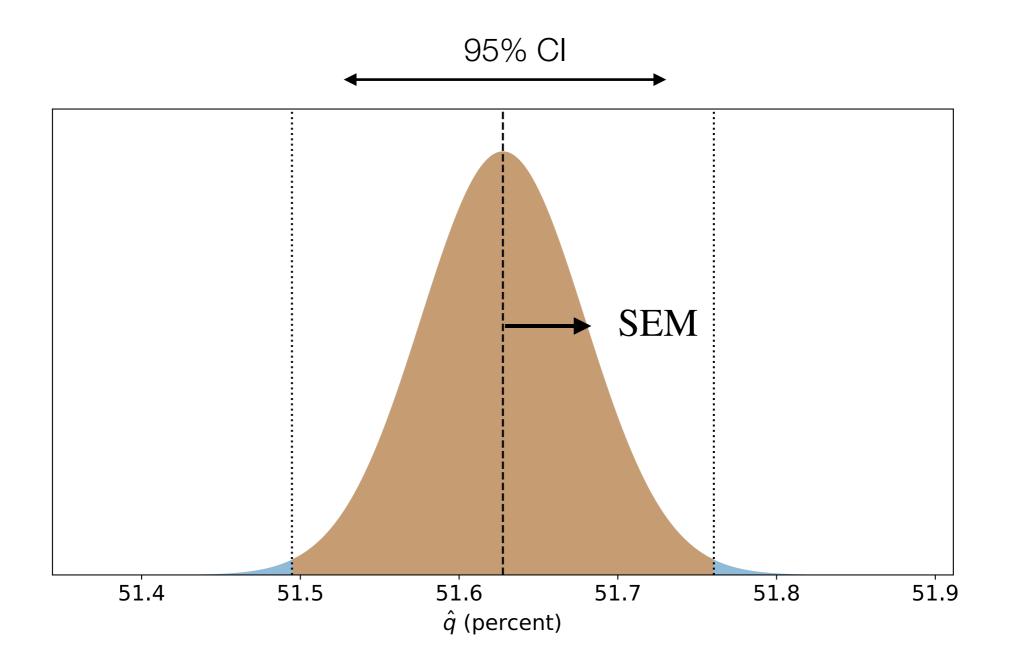
n = 484,382: number of male births


N = 938,223: total number of male births

 $\hat{q} = \frac{n}{N} = 51.63 \%$: estimated probability of a newborn being male

The lingering uncertainty in q is (verly nearly) described by a normal distribution centered on the estimate \hat{q} .

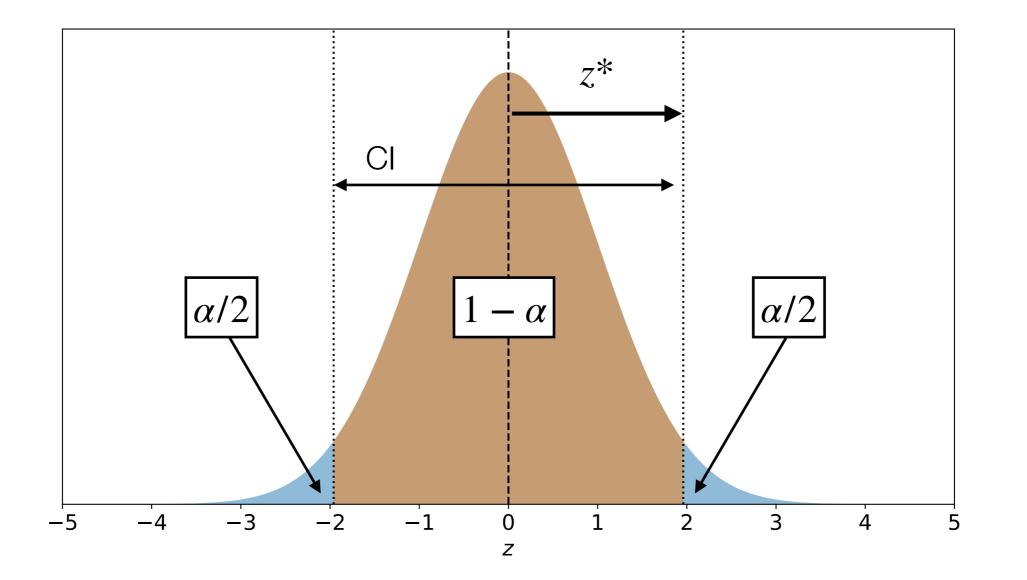
The standard deviation of this distribution is called the standard error of the mean (SEM).


$$\text{SEM} = \sqrt{\hat{q}(1-\hat{q})/N}$$

The 95% confidence interval, describing plausible values of q, is computed using both \hat{q} and SEM.

The corresponding 95% confidence interval (CI) is

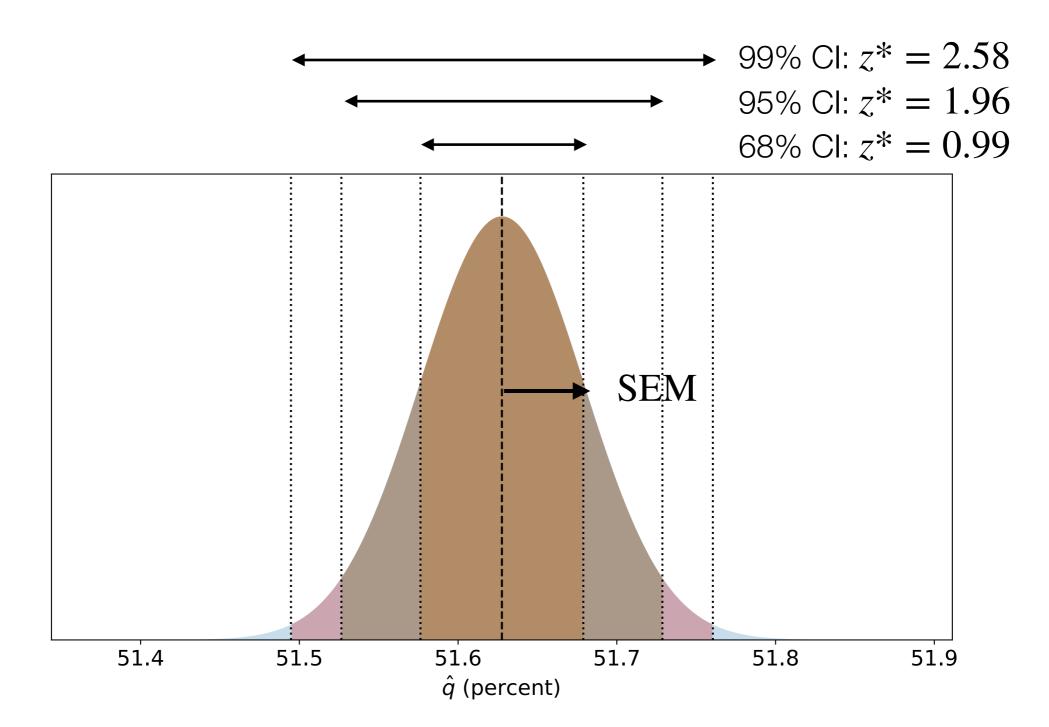
 $[\hat{q} - W, \hat{q} + W]$ where $W = 1.96 \times \text{SEM}$



Uncertainty in *q* **is summarized by a** *z***-statistic**

The *z*-statistic is defined by:
$$z = \frac{q - \hat{q}}{\text{SEM}}$$

Because of the central limit theorem, $z \sim \text{Normal}(0, 1)$.


The user chooses a value for α , the probability that q is <u>not</u> within the confidence interval. Choosing α fixes the value of z^* . Using $\alpha = 5\%$ gives $z^* = 1.96$.

Confidence intervals of different stringency can be computed using different zstatistic thresholds

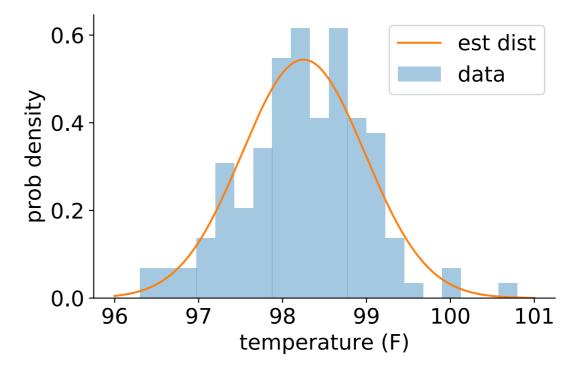
Other confidence intervals are given by $[\hat{q} - W, \hat{q} + W]$ where

margin of error: $W = z^* \times SEM$

Example 2: Healthy Human Body Temperature

Example 2: Human body temperature

Body Temp	Sex	Heart Rate
96.3	2	70
96.7	2	71
96.9	2	74
97.0	2	80
97.1	2	73
97.1	2	75
97.1	2	82
97.2	2	64
97.3	2	69
97.4	2	70


Mackowiak PA, Wasserman SS, Levine MM. (1992) A Critical Appraisal of 98.6°F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich. *JAMA*. 268(12):1578–1580.

(Sex: 1 = female, 2 = male)

Example 2: Human Body Temperature

We model temperature using a normal distribution

Body	Temp
	96.3
	96.7
	96.9
	97.0
	97.1
	97.1
	97.1
	97.2
	97.3
	97.4

temperature mean μ

estimate: 98.25 F

95% CI: [98.12 F, 98.38 F]

temperature standard deviation $\boldsymbol{\sigma}$

estimate: 0.73 F 95% CI: [0.65 F, 0.83 F]

	Welcome to GraphPad Prism
GraphPad Decision 8.2.1 (279) Version 8.2.1 (279) NEW TABLE & GRAPH XY Column Grouped Contingency Survival Parts of Whole Multiple variables Nested CLOPEN A File LabArchives Clone a Graph Graph Portfolio	Column tables have one grouping variable, with each group defined by a column
Prism Tips	Cancel Create

		2272	podytemp.pzfx	0 D	0	
Q~ Search		*	Group A	Group B	Group C	Gr
▼ Data Tables	>>		Body Temp	Title	Title	
🔛 Data 1			Y	Y	Y	
+ New Data Table		1	96.3			
▼ Info	>>					
(i) Project info 1		2	96.7			
⊕ New Info		3	96.9			
▼ Results	>>	4	97.0			
① New Analysis		5	97.1			
▼ Graphs	>>	-				
🗠 Data 1		6	97.1			
Family	>>	7	97.1			
🛄 Data 1		8	97.2			
🗠 Data 1		9	97.3			
		10	97.4			
		11	97.4			
		12	97.4			
		13	97.4			
		14	97.5			
			III 🛈 🗮			\gg

How to do this in **PRISM**

a to analyze	
able: Data 1	¥
be of analysis	
/hich analysis?	Analyze which data sets?
Transform, Normalize	A:Body Temp
► XY analyses	
Column analyses	
t tests (and nonparametric tests)	
One-way ANOVA (and nonparametric o	
One sample t and Wilcoxon test	
Descriptive statistics	
Normality and ognormality Tests	
Frequency discussion	
ROC Curve	When you analyze tables or graphs with
Bland-Altman method comparison	more than one data set, use this space
Identify outliers	to select which data set(s) to analyze.
Analyze a stack of P values	
Grouped analyses	
Contingency table analyses	
Survival analyses	
Parts of whole analyses	
Multiple variable analyses	
Nested analyses	
Generate curve	
Simulate data	
Recently used	Select All Deselect All
	Cancel

How to do this in **PRISM**

Maan CD CEM	Minimum and maximum range
Mean, SD, SEM Column sum	Minimum and maximum, range
	Quartiles (Median, 25th and 75th percentile)
vanced	
Coefficient of variation	Geometric mean
Skewness and kurtosis	Harmonic mean
Percentile 90	Quadratic mean
nfidence intervals	
🗹 CI of the mean	CI of harmonic mean
CI of geometric mean	CI of quadratic mean
Cl of median	
Confidence level 95%	
bcolumns	
	each row, and then perform the calculation
• Average the replicates in e for each column	each row, and then perform the calculation r each subcolumn separately
 Average the replicates in e for each column Perform the calculation for 	
 Average the replicates in endotroit for each column Perform the calculation for Treat all the values in all stress 	r each subcolumn separately
 Average the replicates in endotroit Perform the calculation for Treat all the values in all substitut 	r each subcolumn separately ubcolumns as one set of data
 Average the replicates in endotroit for each column Perform the calculation for Treat all the values in all stress 	r each subcolumn separately ubcolumns as one set of data
 Average the replicates in end for each column Perform the calculation for Treat all the values in all substitut tput Show this many significant diagonal 	r each subcolumn separately ubcolumns as one set of data gits: 4
 Average the replicates in endotroit Perform the calculation for Treat all the values in all substitut 	r each subcolumn separately ubcolumns as one set of data gits: 4

Q~ Search			A	В
▼ Data Tables >>>		Descriptive statistics	Body Temp	Title
🛄 Data 1			Y	Y
🕀 New Data Table	1	Number of values	130	
▼ Info >>>	· · ·	Number of values	130	
(i) Project info 1	2			
⊕ New Info	3	Mean	98.25	
▼ Results >>>	4	Std. Deviation	0.7332	
Descriptive statistics of Data 1	<u> </u>			
① New Analysis	5	Std. Error of Mean	0.06430	
▼ Graphs >>>	6			
Family >	> 7	Lower 95% CI of mean	98.12	
🖽 Data 1	8	Upper 95% CI of mean	98.38	
Descriptive statistics	9			
	10			
	11			
	12			
	13			
	14			

We assume the temperature of a healthy person is drawn from a normal distribution

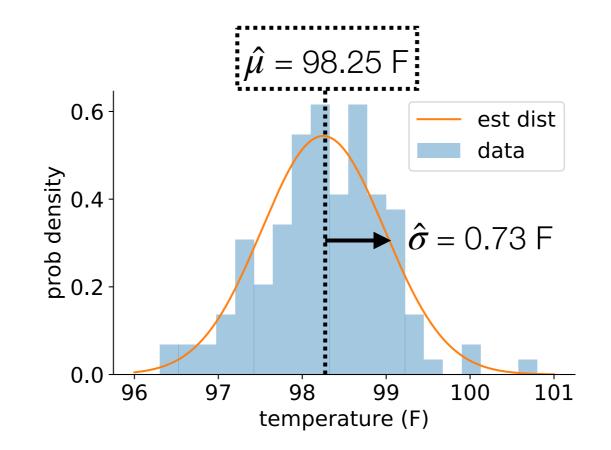
data

 $x_1, x_2, ..., x_N$

 x_i : temperature of individual *i* in Fahrenheit

model

$x \sim \text{Normal}(\mu, \sigma^2)$


 μ : average body temperature σ : standard deviation of temperatures

goals

1. Compute best estimates for both μ, σ

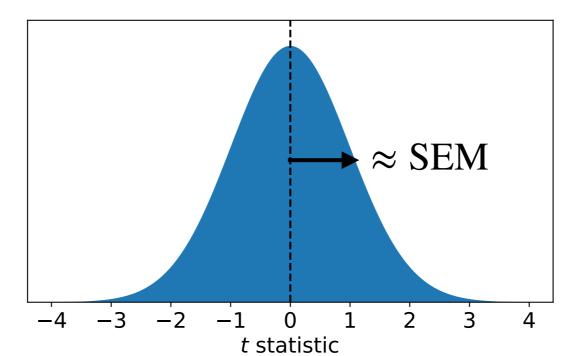
2. Compute confidence intervals for both μ, σ

We want to infer two parameters from our data

Here there are two parameters that need to be estimated, μ and σ

This is unlike with the binomial distribution, where there was only one parameter q.

The lingering uncertainty in μ is described by a t-distribution

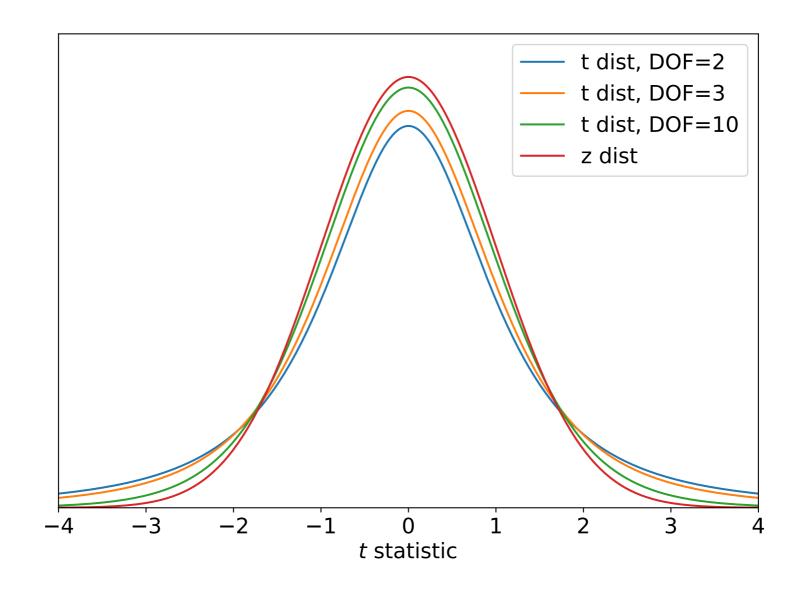

The standard error of the mean (SEM) is given by

$$\text{SEM} = \frac{\hat{\sigma}}{\sqrt{N}}$$

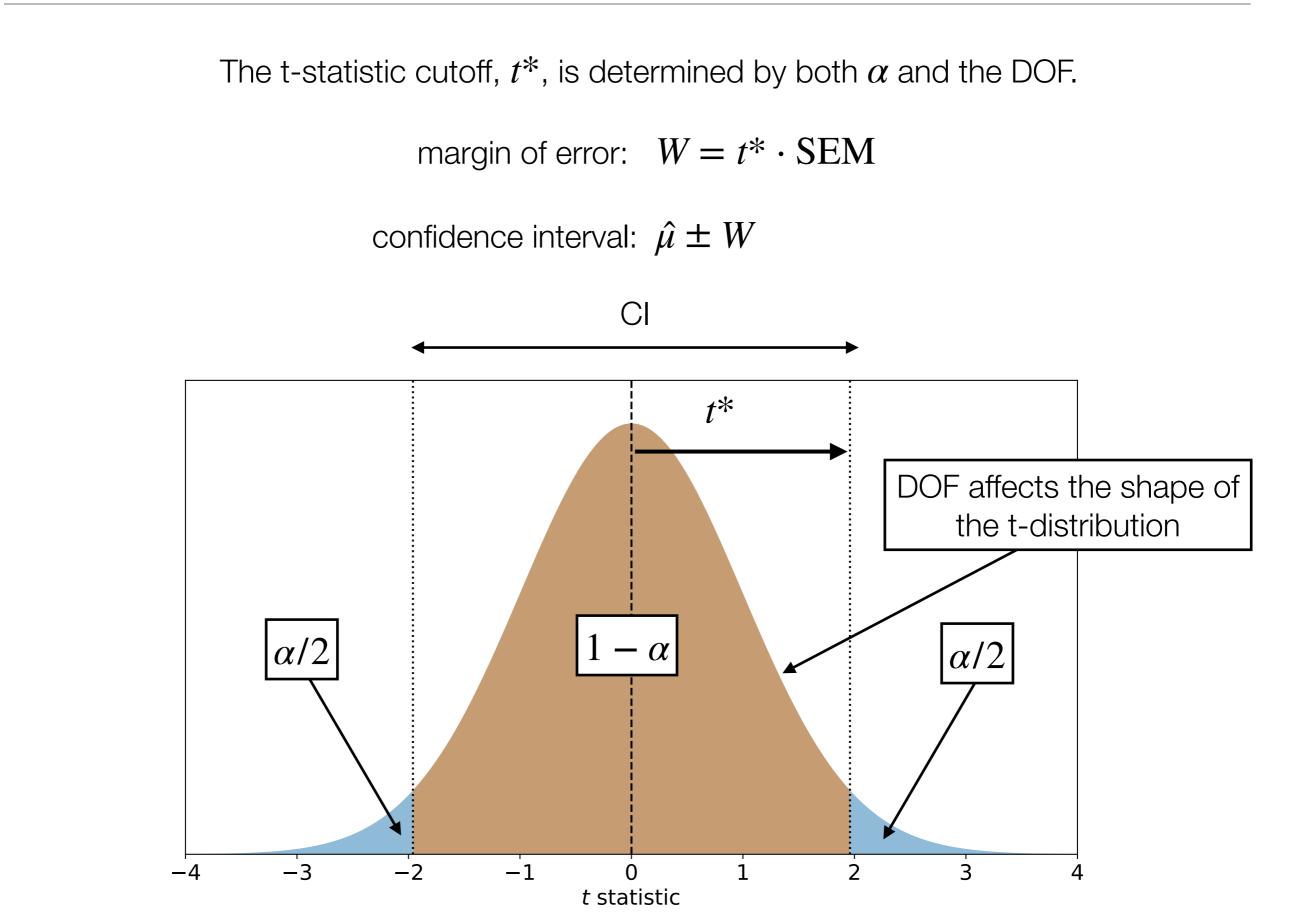
A t-statistic is then used to indicate how strongly μ deviates from $\hat{\mu}$:

$$t = \frac{\mu - \hat{\mu}}{\text{SEM}}$$

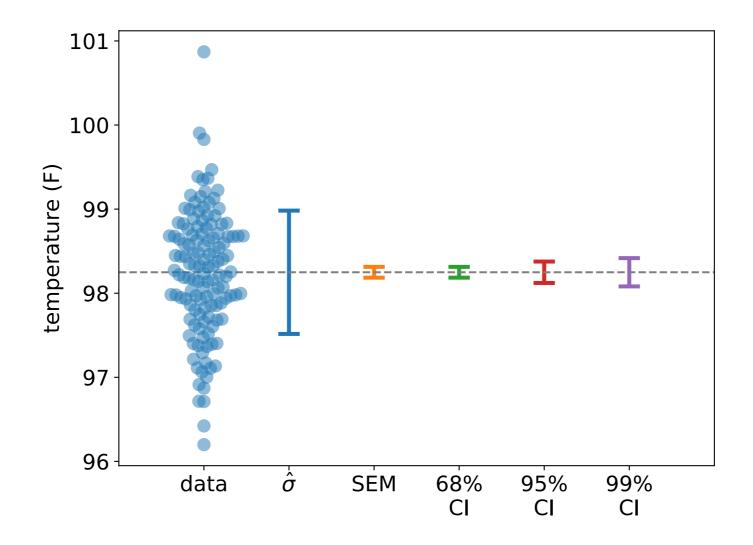
The t-statistic follows a <u>t-distribution</u> (almost a normal distribution, but not quite)



The shape of the t-distribution is affected by the number of degrees of freedom (DOF)


In this case, we use a t-distribution with DOF given by

DOF = N - 1

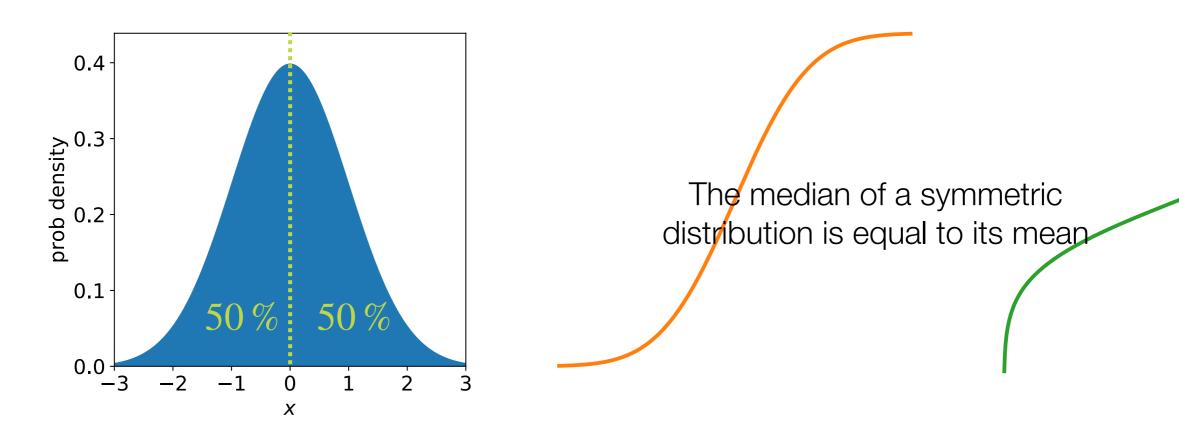

This is almost indistinguishable from a normal (z) distribution when $DOF \gtrsim 10$.

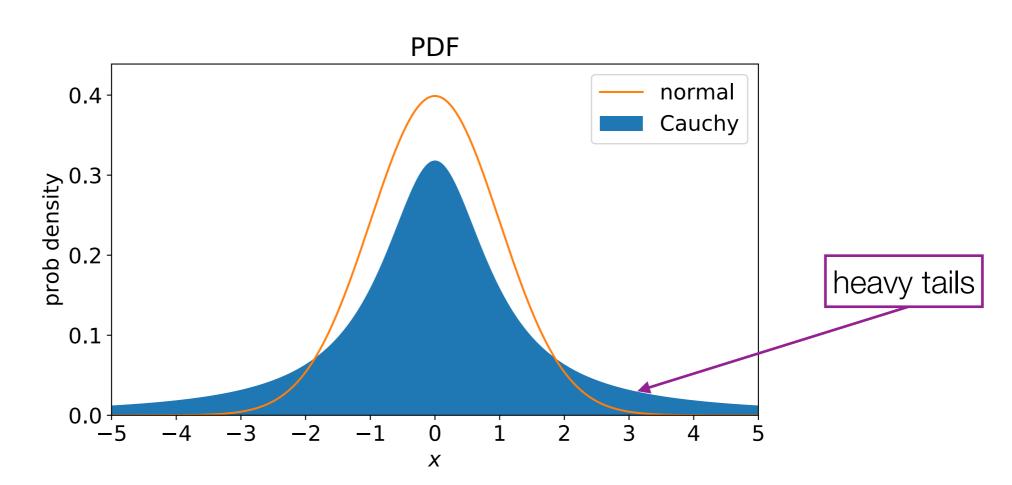
The t-distribution is used to compute a t-statistic cutoff, which determines the confidence interval

Confidence intervals (CIs) and standard errors of the mean (SEMs) quantify how uncertain a parameter

SEMs and CIs of the mean quantify the uncertainty in μ , not the width of the sampling distribution ($\hat{\sigma}$).

SEMs and CIs decrease in size as the amount of data increases.


Cls <u>increase</u> in size if the required confidence level <u>increases</u> (i.e., α decreases)

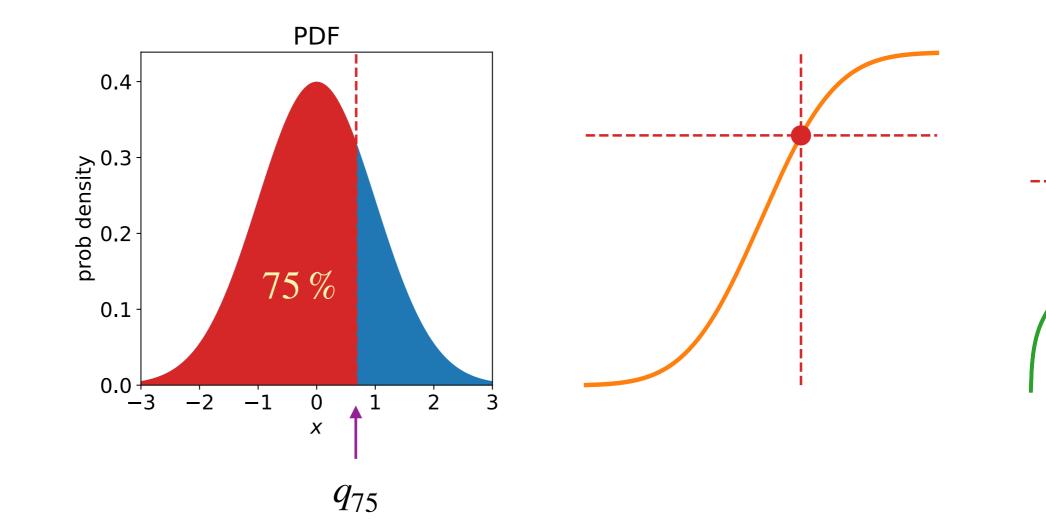

The median is the standard nonparametric estimate of a distribution's center

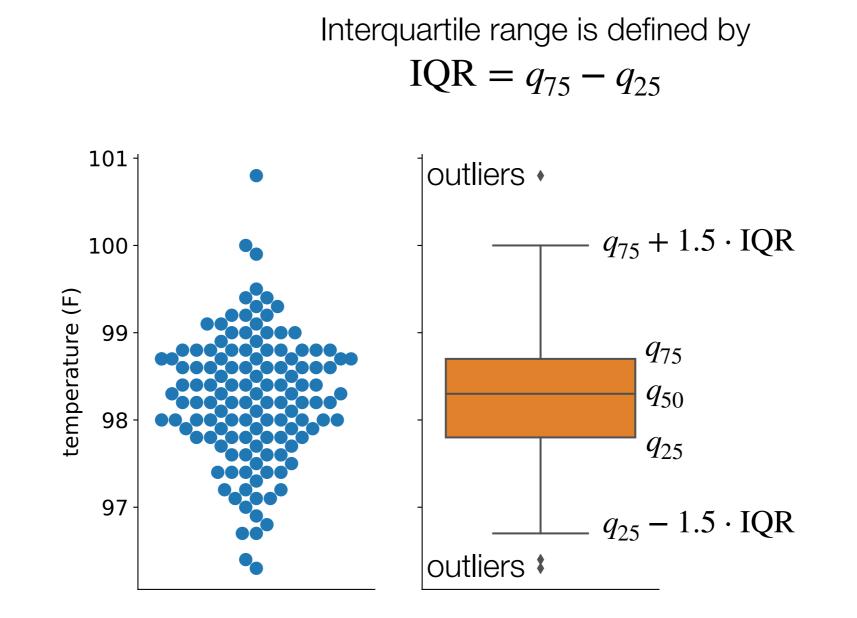
For data: sort the data $x_1, x_2, x_3, \ldots, x_N$ in ascending order. The median is then defined as:

median =
$$q_{50} = \begin{cases} x_{\frac{N+1}{2}} & \text{if } N \text{ odd} \\ \frac{1}{2} \left(x_{\frac{N}{2}} + x_{\frac{N+2}{2}} \right) & \text{if } N \text{ even} \end{cases}$$

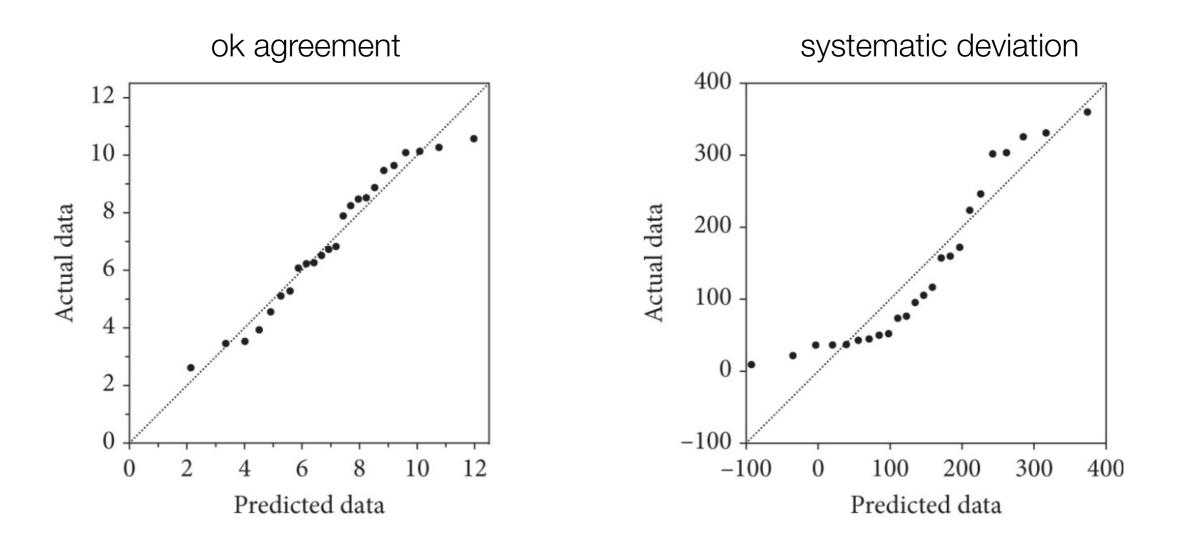
For a distribution: the median is the value of x that separates half the distribution's mass from the other.

Cauchy distribution


The standard estimate of the mean $\hat{\mu}$ will <u>not converge</u> as N becomes large!

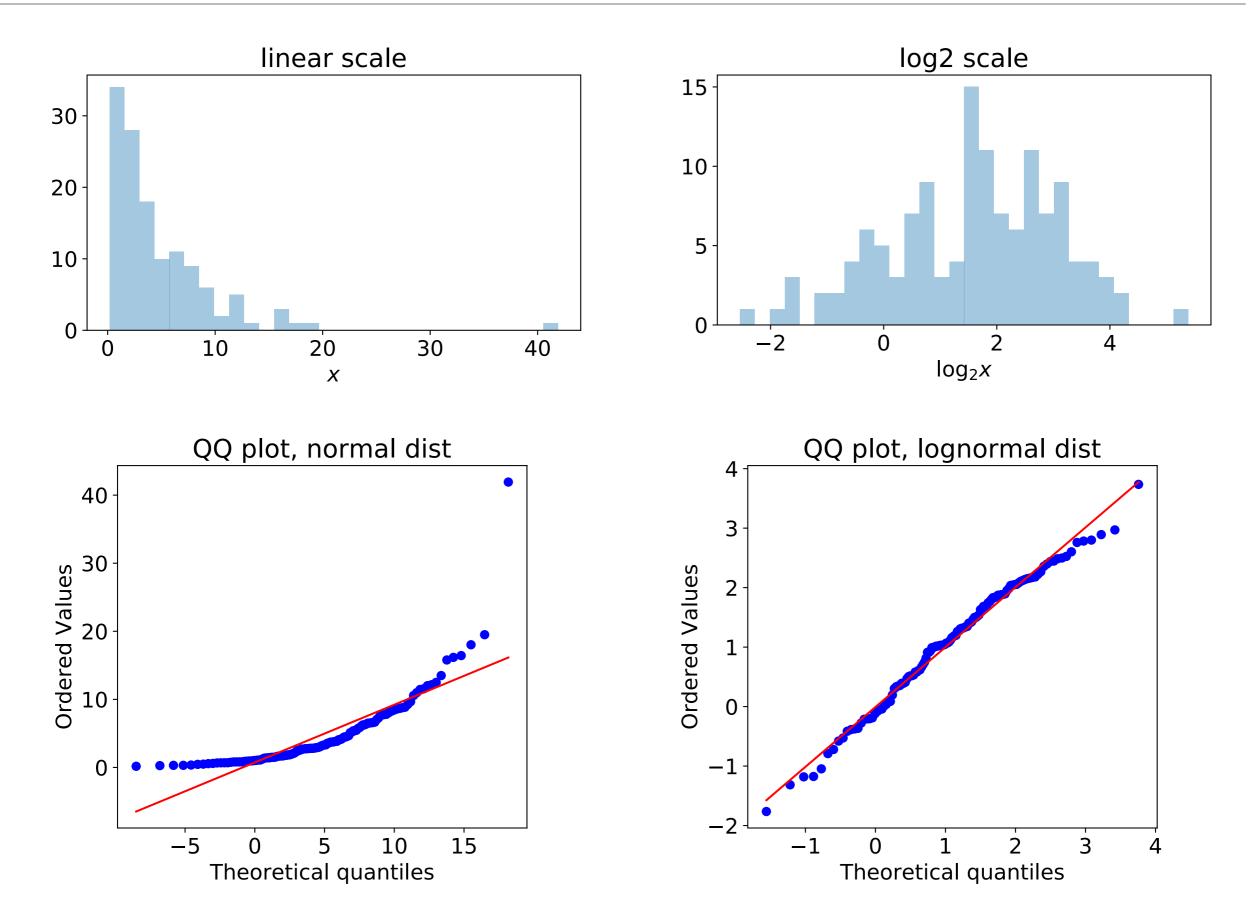

The median q_{50} does converge, just as quickly as for any distribution.

Quantiles of a distribution


More generally, the quantile q_K of a distribution is the value of x that bounds K% of the distribution's mass.

E.g., the median in the quantile q_{50}

QQ plots are used to visually test whether data follows an expected distribution.



y axis: sorted data values x_1, x_2, \ldots, N .

x axis: corresponding quantiles q_X of the inferred distribution, using the percentile values X_1, X_2, \ldots, X_N computed for each data point.

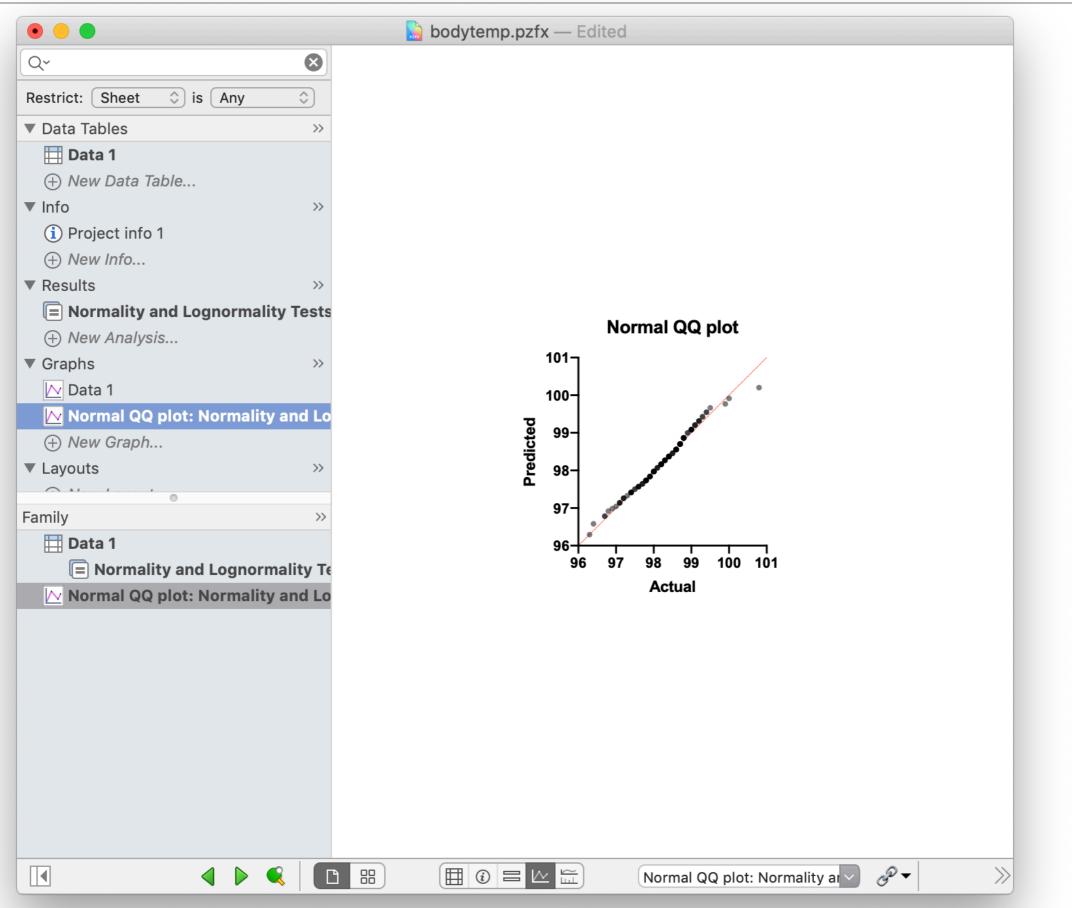
The analysis of a QQ plot is done by eye and making a judgement call.

QQ plot example: simulated lognormal data

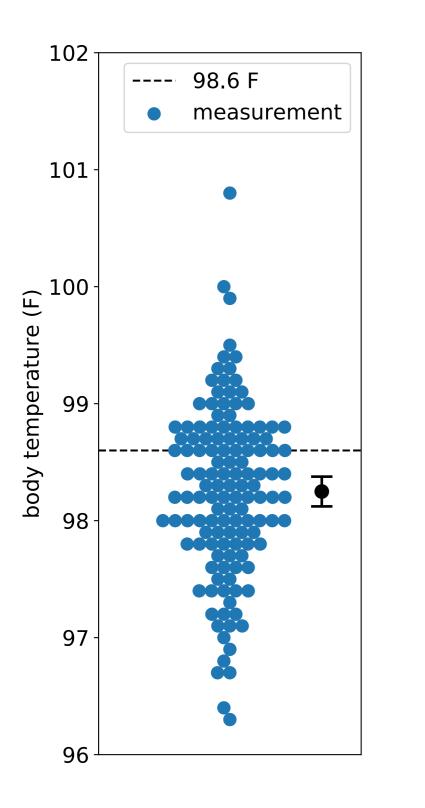
Q~	8		Group A	Group B	Group C	Gr
Restrict: Sheet 🗘 is Any			Body Temp	Title	Title	-
▼ Data Tables	>>		Y	Y	Y	
📕 Data 1	-	1	96.3			
🕀 New Data Table	-	2	96.7			
▼ Info	>>					
(i) Project info 1	-	3	96.9			
New Info		4	97.0			
 Results Hew Analysis 	>> -	5	97.1			
▼ Graphs	>>	6	97.1			
A. Data 1		7	97.1			
Family	>>					
🗮 Data 1	-	8	97.2			
🗠 Data 1		9	97.3			
		10	97.4			
	-	11	97.4			
	-	12	97.4			
	-	13	97.4			
		14	97.5			
▲ ▶						\geq

How to do this in Prism

Create New A	nalysis
Data to analyze	
Table: Data 1	
Turne of enclusio	
Type of analysis	
Which analysis?	Analyze which data sets?
Transform, Normalize	A:Body Temp
► XY analyses	
Column analyses	
t tests (and nonparametric tests)	
One-way ANOVA (and nonparametric o	
One sample t and Wilcoxon test	
Descriptive statistics	
Normality and Lognormality Tests	•
Frequency distribution	
ROC Curve	When you analyze tables or graphs with
Bland-Altman method comparison	more than one data set, use this space to select which data set(s) to analyze.
Identify outliers	to select which data set(s) to analyze.
Analyze a stack of P values Grouped analyses	
 Contingency table analyses 	
 Survival analyses 	
Parts of whole analyses	
Multiple variable analyses	
▶ Nested analyses	
► Generate curve	
Simulate data	
Recently used	Select All Deselect All
?	Cancel


How to do this in Prism

	Parameters: Normality and Lognormality Tests
Which dist	tribution(s) to test?
_	ormal (Gaussian) distribution
	gnormal distribution
	mpute the relative likelihood of sampling from a Gaussian (normal) vs. a lognormal stribution (assuming no other possibilities)
Methods t	o test distribution(s)
🗹 An	derson-Darling test
🗸 🗸	Agostino-Pearson omnibus normality test
_	apiro-Wilk normality test
	Imogorov-Smirnov normality test with Dallal-Wilkinson-Lilliefor P value
Graphing o	
Cre	eate a QQ plot
Subcolum	
	erage the replicates in each row, and then perform the calculation for each column
	rform calculations on each subcolumn separately
O Tre	eat all the values in all subcolumns as single set of data
Calculatio	ns
Signif	icance level (alpha) 0.05
Output	
Show	this many significant digits (for everything except P values): 4
P valu	ue style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0 ᅌ N = 6
i vale	
Make th	ese choices the default for future analyses
?	Cancel


How to do this in Prism

• •		📔 bodytemp.pzfx — Edited				
Q~ 😢		Tabular results 🗸				
Restrict: Sheet 🗘 is Any 🗘	/	Normality and Lognormality Tests	А	В	С	D
▼ Data Tables >>>	Tabular results		Body Temp	Title	Title	Title
🖽 Data 1			Y	Y	Y	Y
🕀 New Data Table	1	Test for normal distribution				
▼ Info >>>	2	Anderson-Darling test				
(i) Project info 1	3	A2*	0.5201			
+ New Info	4	P value	0.1829			
▼ Results >>>	5	Passed normality test (alpha=0.05)?	Yes			
Normality and Lognormality Tests	6	P value summary	ns			
① New Analysis	7					
▼ Graphs >>>	8	D'Agostino & Pearson test				
🗠 Data 1	9	K2	2.704			
🗠 Normal QQ plot: Normality and Lo		P value	0.2587			
⊕ New Graph	11	Passed normality test (alpha=0.05)?	Yes			
▼ Layouts >>>	12	P value summary	ns			
	13					
Family >>	14	Shapiro-Wilk test				
🖽 Data 1	15	W	0.9866			
Normality and Lognormality Te	16	P value	0.2332			
🗠 Normal QQ plot: Normality and Lo	17	Passed normality test (alpha=0.05)?	Yes			
	18	P value summary	ns			
	19					
	20	Kolmogorov-Smirnov test				
	21	KS distance	0.06473			
	22	P value	>0.1000			
	23	Passed normality test (alpha=0.05)?	Yes			
	24	P value summary	ns			
	25					
	26	Number of values	130			
	27					
			Normality and	d Lognormalit	y ∨ @ ▼	\gg

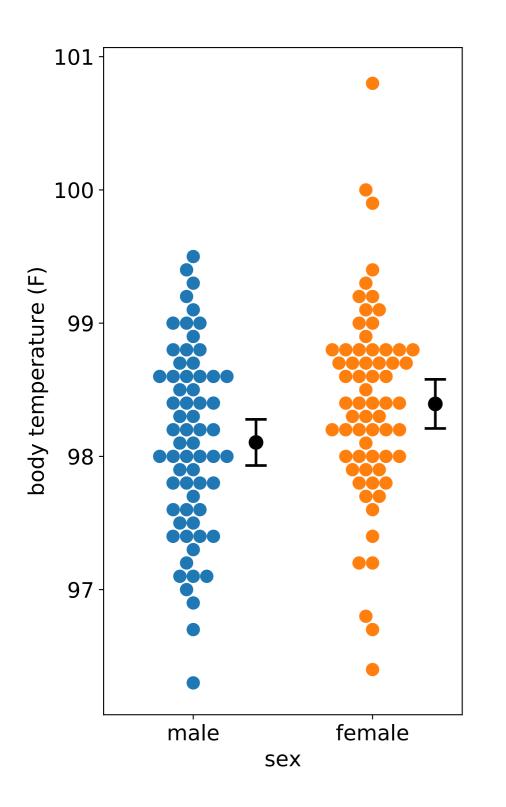
How to do this in PRISM

Student's *t* test (one sample)

Null Hypothesis:

a population is normally distributed with a known mean value of $\mu_{\rm null}$

Data:


measurements: x_1, x_2, \ldots, x_N

Test statistic:

$$t = \frac{\hat{\mu} - \mu_{\text{null}}}{\text{SEM}}$$

Null distribution:

t distribution with DOF = N - 1.

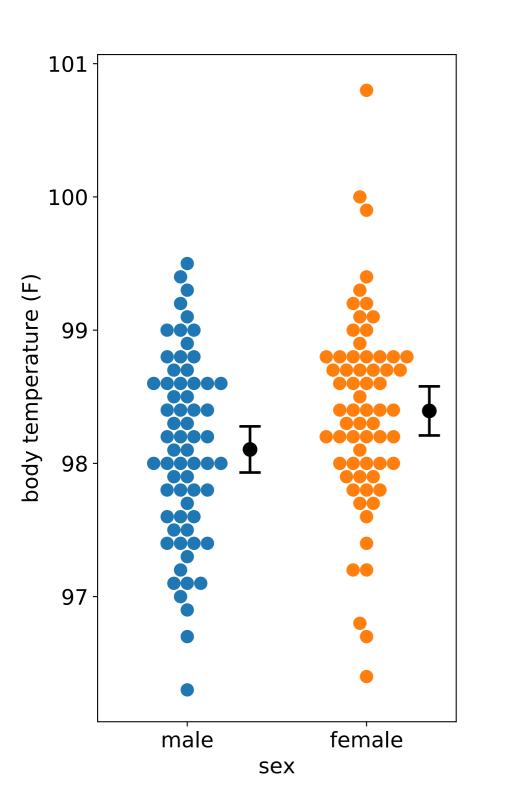
Null Hypothesis:

two populations have the same mean

Data:

 x_1, x_2, \dots, x_m and y_1, y_2, \dots, y_n

Assumptions:


the two populations follow normal distributions and have equal variances

Test statistic:

$$t = \frac{\hat{\mu}_x - \hat{\mu}_y}{\hat{\sigma}\sqrt{\frac{1}{m} + \frac{1}{n}}}, \quad \hat{\sigma} = \sqrt{\frac{(m-1)\hat{\sigma}_x^2 + (n-1)\hat{\sigma}_y^2}{m+n-2}}$$

Null distribution:

t distribution with DOF = m + n - 2.

Null Hypothesis:

two populations have the same mean but <u>not necessarily the same standard deviation</u>

Data:

 x_1, x_2, \dots, x_m and y_1, y_2, \dots, y_n

Advantage:

Fewer assumptions than standard unpaired t test

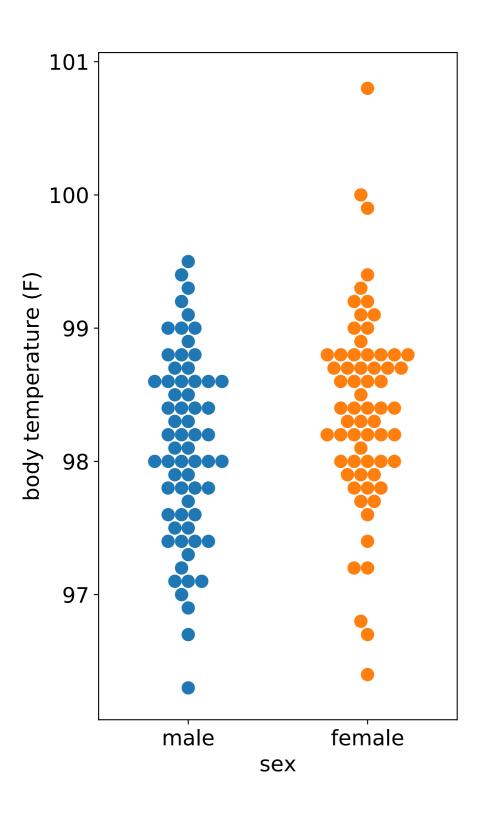
Disadvantage:

Less power than standard unpaired *t* tests

Test statistic:

t =

 $\hat{\mu}_x - \hat{\mu}_y$


 $\int \hat{\sigma}_x^2 + \hat{\sigma}_y^2$

Null distribution:

Student's t distribution with

DOF =
$$\frac{\left(\frac{\hat{\sigma}_{x}^{2}}{m} + \frac{\hat{\sigma}_{y}^{2}}{n}\right)^{2}}{\frac{(\hat{\sigma}_{x}^{2}/m)^{2}}{m-1} + \frac{(\hat{\sigma}_{y}^{2}/n)^{2}}{n-1}}$$

Mann Whitney U test (Wilcoxon rank-sum test)

Null Hypothesis:

If x is sampled from population 1 and y is sampled from population 2, p(x > y) = p(x < y)

Data:

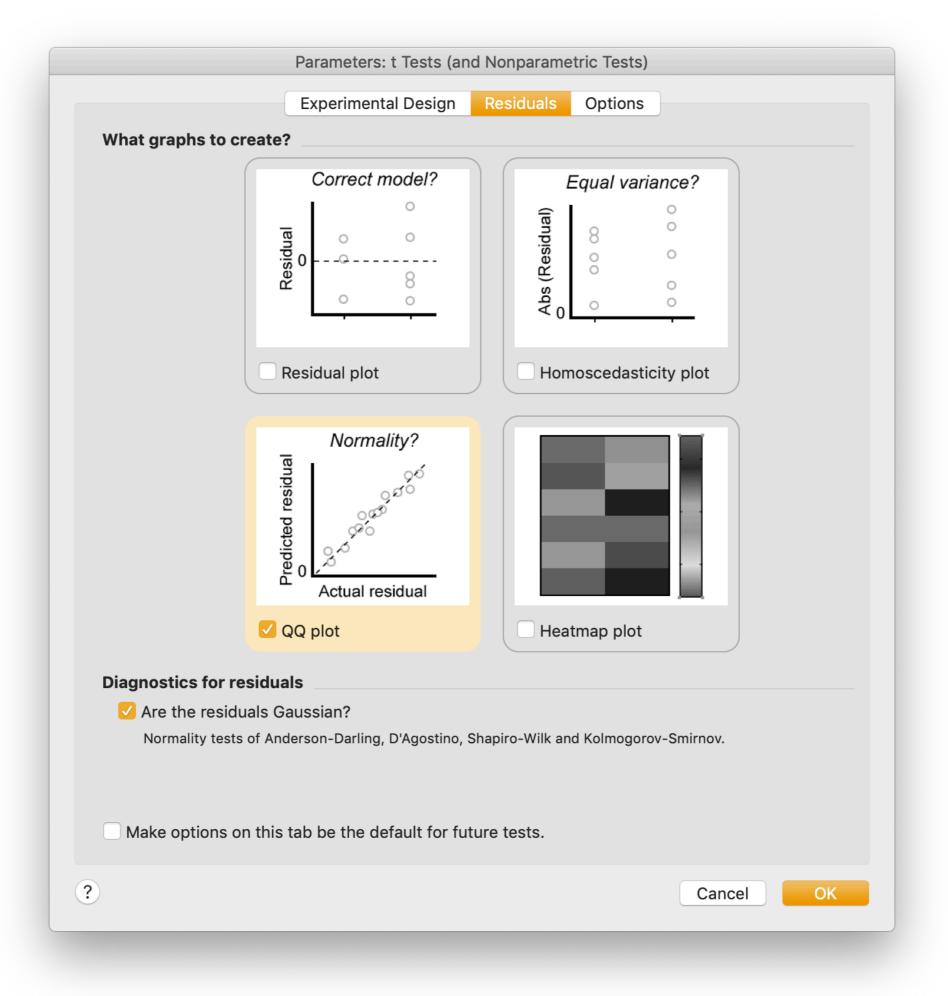
 x_1, x_2, \dots, x_m and y_1, y_2, \dots, y_n

Advantage:

No assumptions about the mathematical form of p(x) and p(y).

Disadvantage:

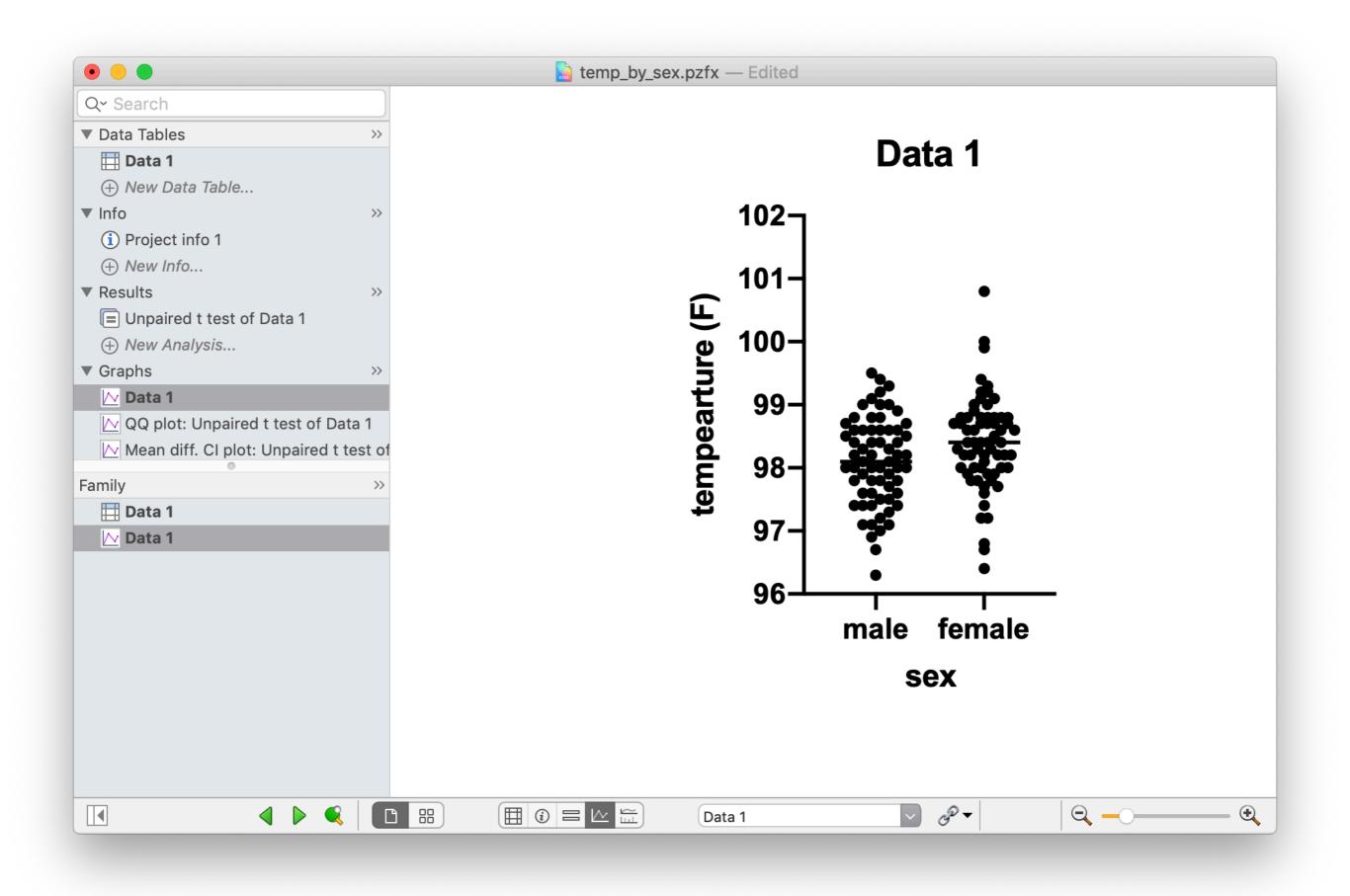
Somewhat less powerful than Student's t test

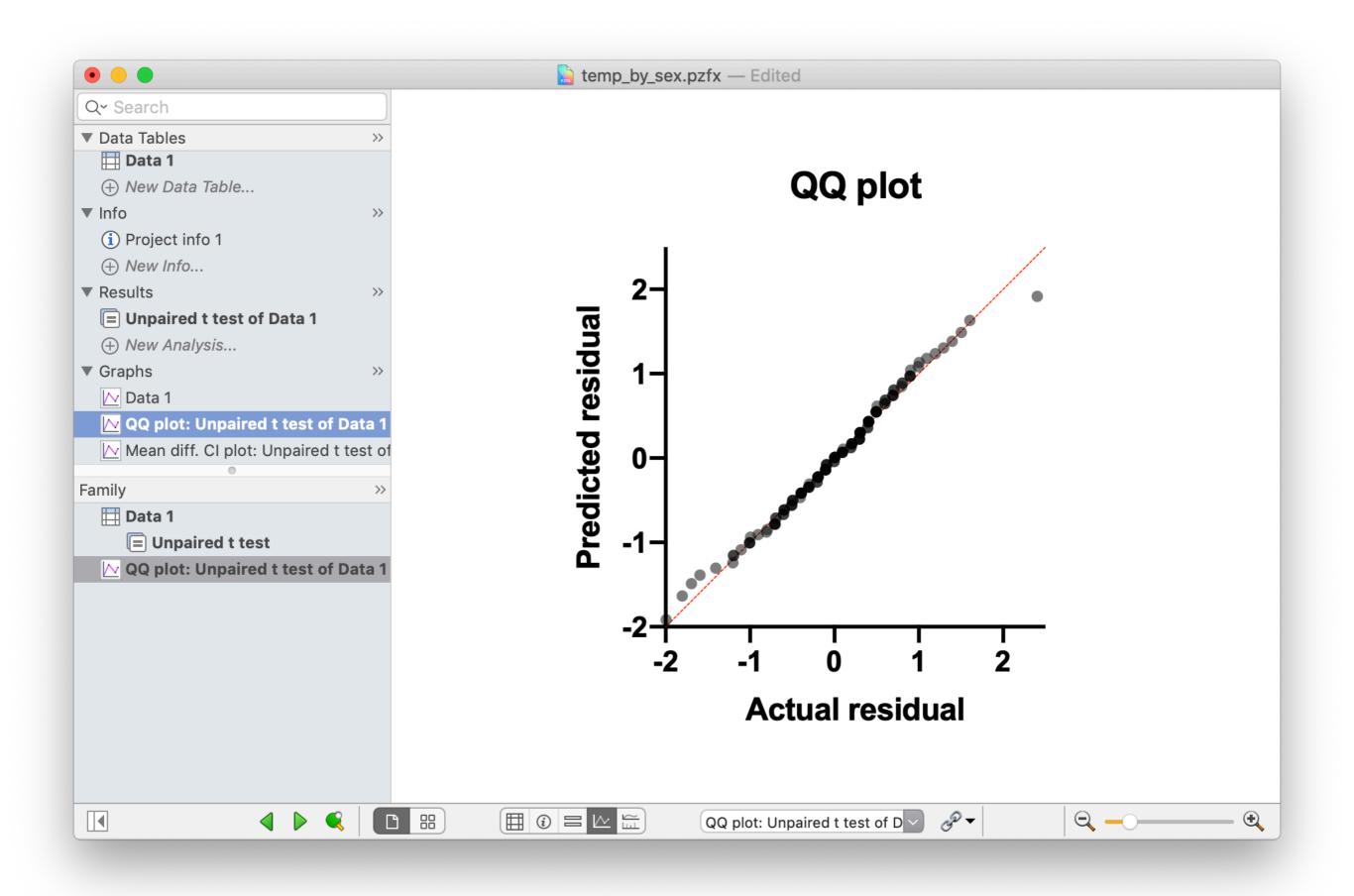

Test statistic:

U (based on rank-order of xs and ys)

		🔚 te	emp_by_sex.pzf>	(
Q~ Search			Group A	Group B	Group C	Group D
▼ Data Tables	>>		male	female	Title	Title
🛄 Data 1			Y	Y	Y	Y
🕀 New Data Table		1	96.3	96.4		
▼ Info	>>					
(i) Project info 1		2	96.7	96.7		
⊕ New Info		3	96.9	96.8		
Results	>>	4	97.0	97.2		
① New Analysis		5	97.1	97.2		
▼ Graphs	>> .					
🗠 Data 1		6	97.1	97.4		
• Family	>>	7	97.1	97.6		
🖽 Data 1		8	97.2	97.7		
🗠 Data 1		9	97.3	97.7		
		10	97.4	97.8		
		11	97.4	97.8		
		12	97.4	97.8		
		13	97.4	97.9		
		14	97.5	97.9		
						>

Create New A	Analysis
ta to analyze	
able: Data 1	S
be of analysis	
Vhich analysis?	Analyze which data sets?
Transform, Normalize	A:male
XY analyses	Sifemale
Column analyses	
t tests (and nonparametric tests)	
One-way ANOVA (and nonparametric o	
One sample t and Wilcoxon test	
Descriptive statistics	
Normality and Lognormality Tests	
Frequency distribution	
ROC Curve	
Bland-Altman method comparison	
Identify outliers	
Analyze a stack of P values Grouped analyses	
 Contingency table analyses 	
 Survival analyses 	
Parts of whole analyses	
Multiple variable analyses	
Nested analyses	
► Generate curve	
Simulate data	
Recently used	Select All Deselect All
	Cancel OK


		Parameters: t Tests (an		etric lests)	
		Experimental Design	Residuals	Options	
Experiment	al design				
📀 Unpaire	ed				
O Paired					
	Group A	Group B			
đ	Control	Treated			
	Y	Y			
1					
2					
3					
4					
		dament.			
Assume Gau	ussian distri	bution?			
	se parametrio				
IES III					
\sim					
No. Us	e nonparame				
\sim	e nonparame				
O No. Use	e nonparame t		nave the same	s SD	
No. Use Choose test	e nonparame t ed t test. Ass	etric test.			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			
No. Use Choose test	e nonparame t ed t test. Ass	etric test. sume both populations h			OK




Parameters: t Tests (and Nonparametric Tests)
Experimental Design Residuals Options
Calculations
P value: One-tailed One-tailed (recommended)
Report differences as: female - male
Confidence level: 95%
Definition of statistical significance: P < 0.05
Graphing options
Graph differences (paired)
Graph ranks (nonparametric)
Graph correlation (paired)
🗹 Graph CI of difference between means
Additional results
Descriptive statistics for each dataset
t Test: Also compare models using AICc
Mann-Whitney: Also compute the CI of difference between medians
Assumes both distributions have the same shape.
Wilcoxon: When both values on a row are identical, use method of Pratt
If this option is unchecked, those rows are ignored and the results will match prior version of Prism
Output
Show this many significant digits (for everything except P values): 4
P value style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.000 ᅌ N= 6 🗘
Make options on this tab be the default for future tests.
? Cancel OK

• •		📔 temp_by_sex.pzfx — Ed	lited			
Q~ Search	1	Tabular results 🗸				
 ▼ Data Tables ≫ Data 1 ⊕ New Data Table 		Unpaired t test Tabular results				
▼ Info »>	4	-				
Project info 1 Now Info	1	Table Analyzed	Data 1			
 ⊕ New Info ▼ Results >> 	2					
Unpaired t test of Data 1	3	Column B	female			
(+) New Analysis	4	vs.	VS.			
▼ Graphs >>	5	Column A	male			
🗠 Data 1	6					
🗠 QQ plot: Unpaired t test of Data 1	7	Unpaired t test				
Mean diff. CI plot: Unpaired t test	8	P value	0.0239			
 ⊕ New Graph ▼ Lavouts >> 	9	P value summary	*			
▼ Layouts >> (+) New Layout	10	Significantly different (P < 0.05)?	Yes			
• Family >>	11	One- or two-tailed P value?	Two-tailed			
🖽 Data 1	12	t, df	t=2.285, df=128			
Unpaired t test	13					
🗠 QQ plot: Unpaired t test of Data 1	14	How big is the difference?				
📐 Mean diff. CI plot: Unpaired t test	15	Mean of column A	98.10			
	16	Mean of column B	98.39			
	17	Difference between means (B - A) :	0.2892 ± 0.1266			
	18	95% confidence interval	0.03882 to 0.5396			
	19	R squared (eta squared)	0.03921			
	20					
	21	F test to compare variances				
	22	F, DFn, Dfd	1.132, 64, 64			
	23	P value	0.6211			
	3 88		aired t test of Data 1	~ ~~	Row 1, Column A	Θ \bullet

		🔓 tem	p_by_sex.pzfx — Edit	ed			
Q- Search			b_by_sex.pzix	.00			
▼ Data Tables >>>		Tabular results 🗸 🗸					
Data 1		Unpaired t test					
(+) New Data Table		Tabular results					
▼ Info >>>							
(i) Project info 1	20						
+ New Info	21	F test to compare variances					
▼ Results >>	22	F, DFn, Dfd	1.132, 64, 64				
Unpaired t test of Data 1	23	P value	0.6211				
New Analysis	24	P value summary	ns				
▼ Graphs >>>	25	Significantly different (P < 0.05)?	No				
QQ plot: Unpaired t test of Data 1		Significantly unlerent (F < 0.05)?					
Mean diff. CI plot: Unpaired t test	26						
•	27	Normality of Residuals					
Family >>	28	Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
🖽 Data 1	29	Anderson-Darling (A2*)	0.3633	0.4359	Yes	ns	
E Unpaired t test	30	D'Agostino-Pearson omnibus (K2)	2.467	0.2913	Yes	ns	
QQ plot: Unpaired t test of Data 1	31	Shapiro-Wilk (W)	0.9906	0.5264	Yes	ns	
	32	Kolmogorov-Smirnov (distance)	0.05178	0.1000	Yes	ns	
	33						
	34	Data analyzed					
	35	Sample size, column A	65				
	36	Sample size, column B	65				
	37						
	38						
			aired t test of Data 1		Row 1, Column A		Ð

