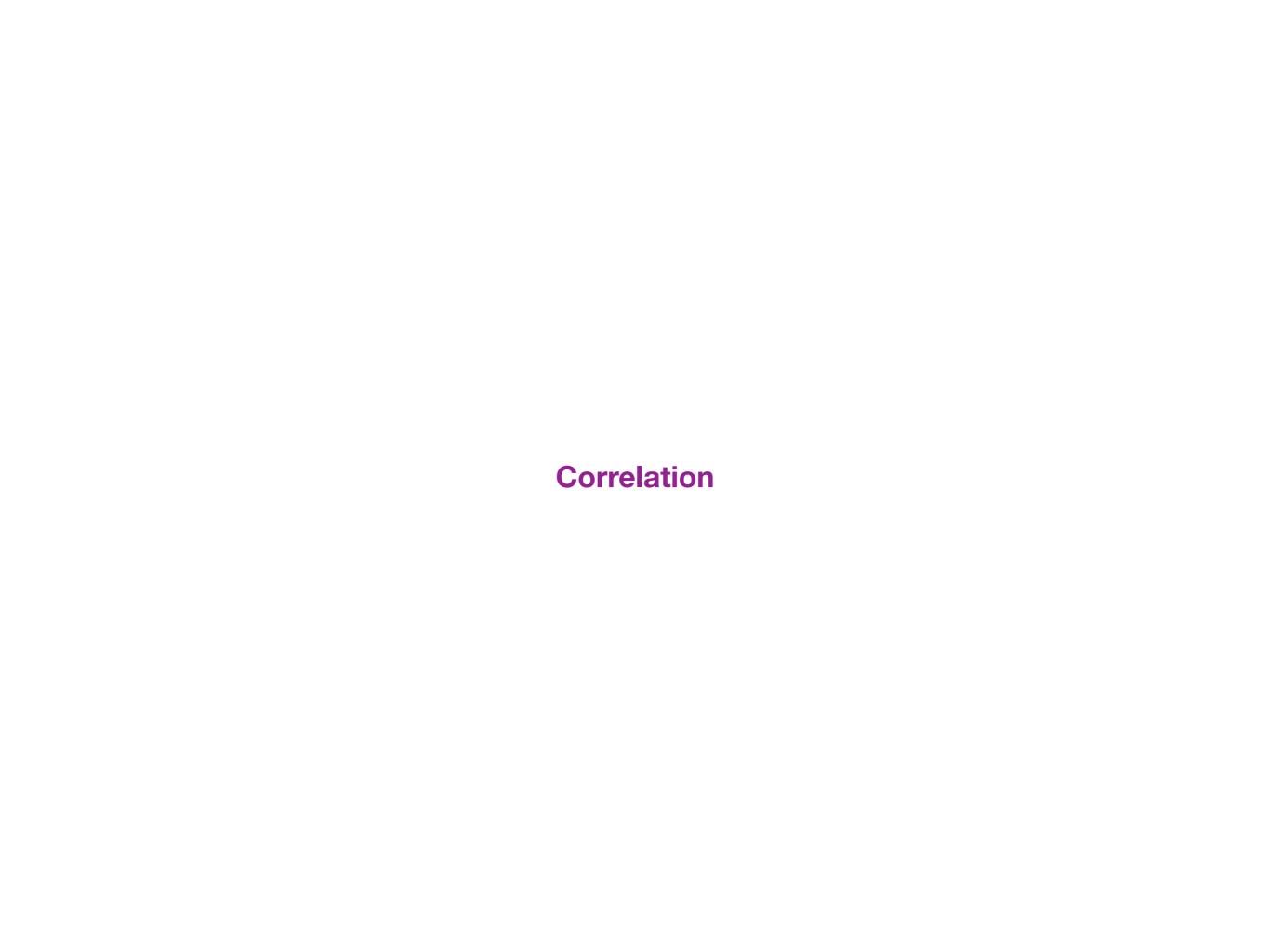
Correlation Power analysis Analysis of variance (ANOVA) Multiple hypothesis testing

Biostatistics Course 2024 Lecture 4 Thursday, 11 July 2024 10:00pm - 12:00pm



Example: lipids and insulin sensitivity

sensitivity	fatty_acid
250	17.9
220	18.3
145	18.3
115	18.4
230	18.4
200	20.2
330	20.3
400	21.8
370	21.9
260	22.1
270	23.1
530	24.2
375	24

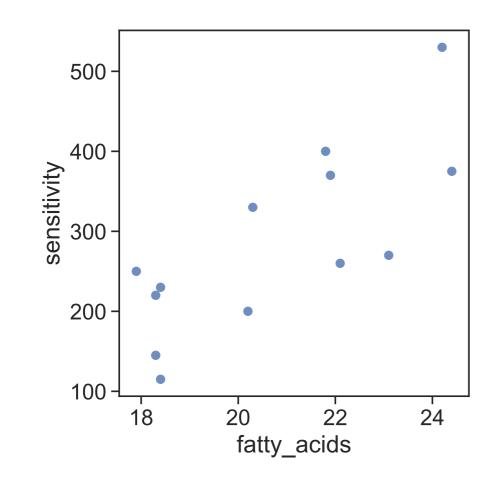
Borkman et al. (1993) wanted to understand why insulin sensitivity varies so much among individuals. They hypothesized that the lipid composition of the cell membranes of skeletal muscle affects the sensitivity of the muscle for insulin.

They determined the insulin sensitivity of N=13 healthy men by infusing insulin at a standard rate (adjusting for size differences) and quantifying how much glucose they needed to infuse to maintain a constant a blood glucose level...

They also took a small muscle biopsy from each subject and measured its fatty acid composition. We'll focus on the fraction of of polyunsaturated fatty acids that have between 20 and 22 carbon atoms ("fatty_acid").

Correlation is used to describe relationships between real-numbered variables

- a measure of relatedness of two variables, X and Y
- independent of measurement units
- ranges between -1 and 1



summary statistics

	pearson
N	13
r	0.77
95% CI	[0.38, 0.93]
r ²	0.593
P-val	0.00207701

Covariance and correlation are estimated from data in the familiar manner

The formula for variance is

$$\widehat{\operatorname{var}}(x) = \sigma_x^2 = \frac{1}{N-1} \sum_i (x_i - \hat{\mu}_x)^2$$

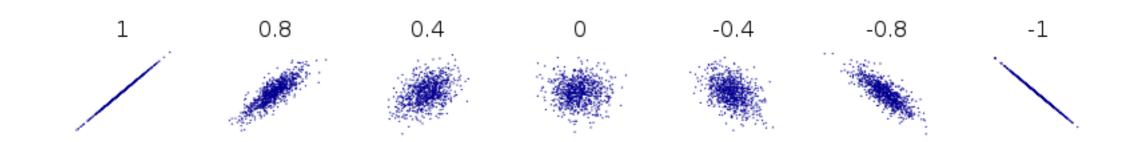
Covariance is estimated in a manner similar to variance

$$\widehat{\operatorname{cov}}(x, y) = \frac{1}{N-1} \sum_{i} (x_i - \widehat{\mu}_x)(y_i - \widehat{\mu}_y)$$

The corresponding "correlation coefficient" is

$$r = \frac{\widehat{\text{cov}}(x, y)}{\widehat{\sigma}_x \, \widehat{\sigma}_y}$$

This is what the correlation coefficient looks like



Pearson's r ranges from -1 to 1.

r=0 implies independence or no relationship, i.e. $p(x,y)=p(x)\cdot p(y)$.

 $r = \pm 1$ when the two variables share a deterministic linear relationship.

r close to 1 implies nearly perfect positive dependence

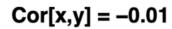
r close to -1 implies nearly perfect negative dependence

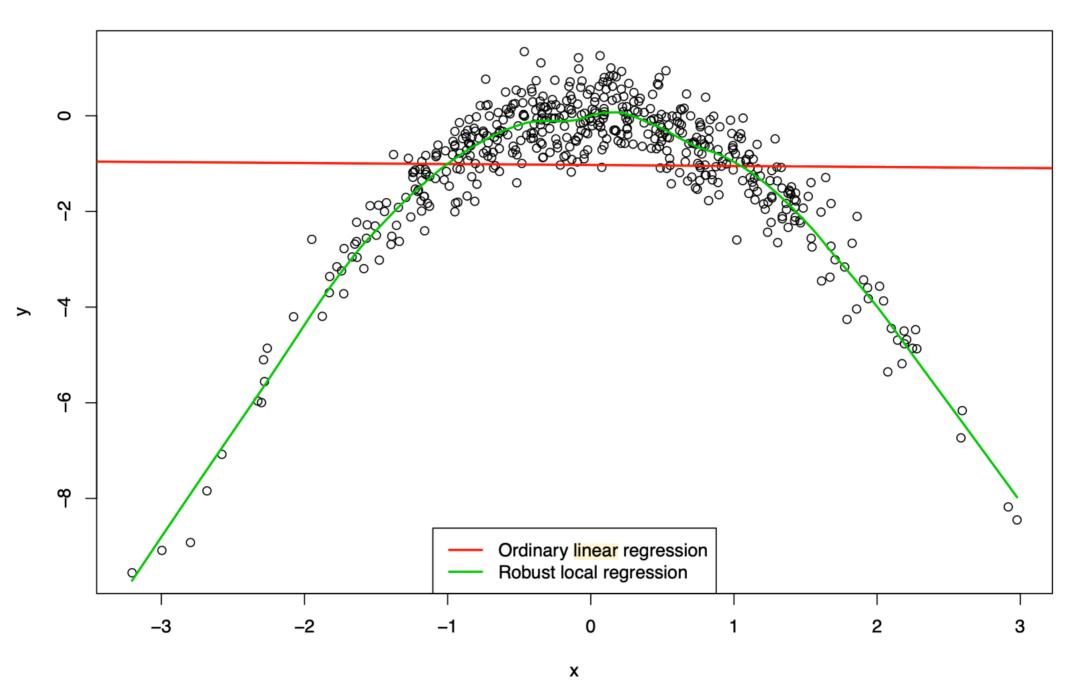
Adding a constant to all x or all y, or a multiplicative rescaling of all x or all y, do not change r.

This is what the correlation coefficient looks like

In the deterministic case, r is unaffected by the magnitude of the slope relating two variables, while the sign of r is equal to the sign of the slope.

Sometimes r=0 when two variables have a non-linear relationship. Note that the correlation coefficient only captures **linear relationships** between two variables.





The <u>coefficient of determination</u> is simply r^2 , which is also often written as R^2 .

 r^2 is always between 0 and 1 (inclusive)

Remember that $r^2 \leq |r|$, so beware of people reporting r instead of r^2 to make a correlation seem stronger.

 r^2 is commonly interpreted as the <u>fraction of variance</u> in y explained by x (or the other way around).

Hypothesis testing

Null hypothesis is "no correlation between the variables"

$$H_0: \rho = 0$$

Alternative hypothesis is "there is a relationship between the variables"

$$H_a: \rho \neq 0$$
 (two-sided), or

$$H_a: \rho < 0$$
 (one-sided less, or)

$$H_a: \rho > 0$$
 (one-sided greater)

Test statistic is t-statistic that has a t_{n-2} under the null hypothesis

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

Hypothesis testing

Null hypothesis is "no correlation between the variables"

$$H_0: \rho = 0$$

Alternative hypothesis is "there is a relationship between the variables"

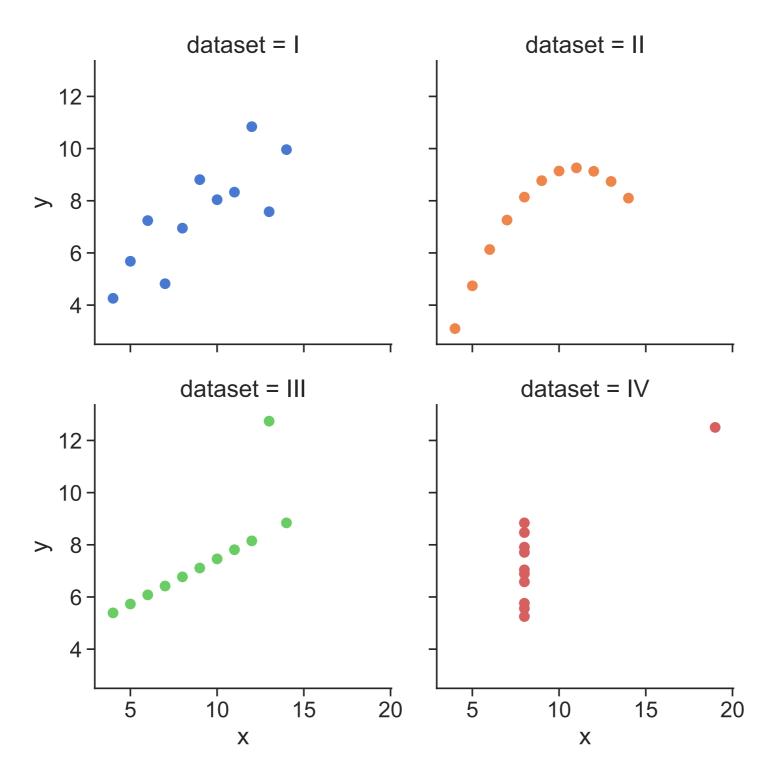
$$H_a: \rho \neq 0$$
 (two-sided), or

$$H_a: \rho < 0$$
 (one-sided less, or)

$$H_a: \rho > 0$$
 (one-sided greater)

Lots of different-looking datasets will have the same value for r.

"Anscombe's quartet": r = 0.816 for all 4 datasets



Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21.

Assumptions underlying correlation

Interpreting the correlation coefficient r, and especially the associated P-value, requires multiple assumptions:

- Each data point (x, y) is independently sampled from a 2D Gaussian distribution.
- In particular, x and y each follow a 1D Gaussian distribution
- All covariation between x and y is linear, with perfect concordance disrupted only by Gaussian noise.

There are usually many explanations for why two variables might correlate

Possible reasons for a correlation between lipid levels and insulin sensitivity:

- The lipid content of membranes affects insulin sensitivity
- The insulin sensitivity affects membrane lipid content
- Both insulin sensitivity and lipid content are under the control of some third factor, such as a hormone.
- Lipid content, insulin sensitivity, and other factors are all part of a complex molecular/biochemical/physiological network, perhaps with positive and/or negative feedback components. The correlation observed is just a peak at a much more complex set of interdependent relationships.
- Membrane lipid content and insulin sensitivity don't actually correlate at all;
 the result is just a coincidence.

Correlation is NOT causation!!!

NEW TABLE & GRAPH

Colum Group Continger by

Survival

Parts of Whole

Multiple variables

Nested

EXISTING FILE

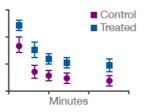
Open a File
LabArchives
Clone a Graph

Graph Portfolio

XY tables: Each point is defined by an X and Y coordinate

Welcome to GraphPad Prism

	ď		X	A		В			
l			Minutes	Control			Treated		
			X	A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3
	1	Title							
	2	Title							
	3	Title							



? Learn more

Data table:

- O Enter or import data into a new table
- Start with sample data to follow a tutorial

Options:

- X: Numbers
 - Numbers with error values to plot horizontal error bars
 - Dates
 - Elapsed times
- Y: Enter and plot a single Y value for each point

eter 3 © replicate values in side-by-side subcolumns

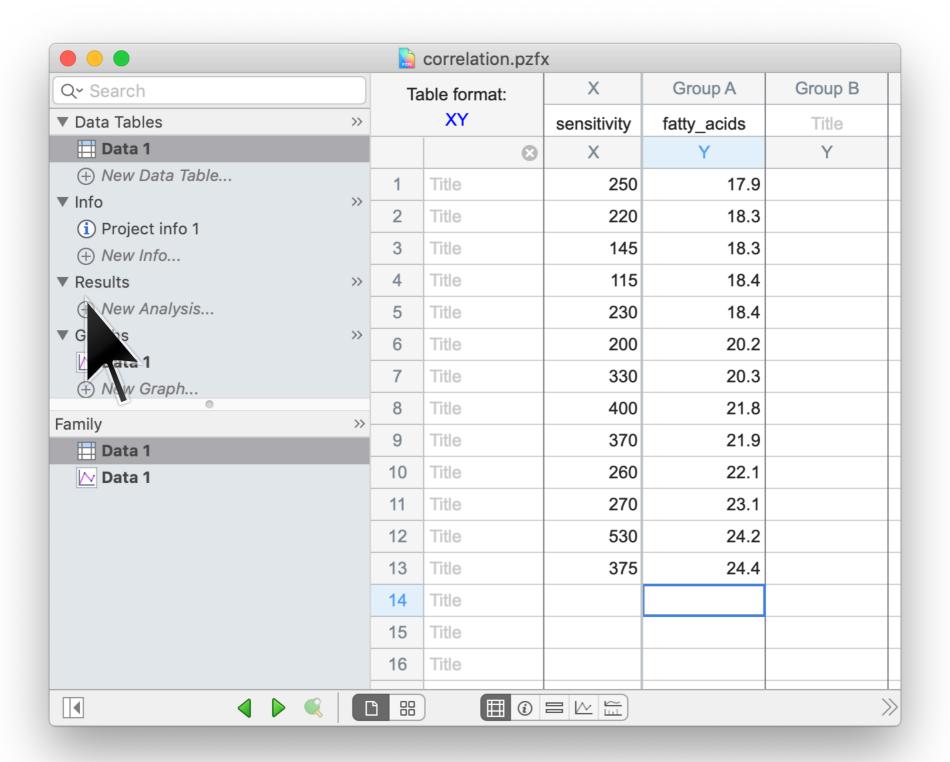
and plot error values already calculated elsewhere

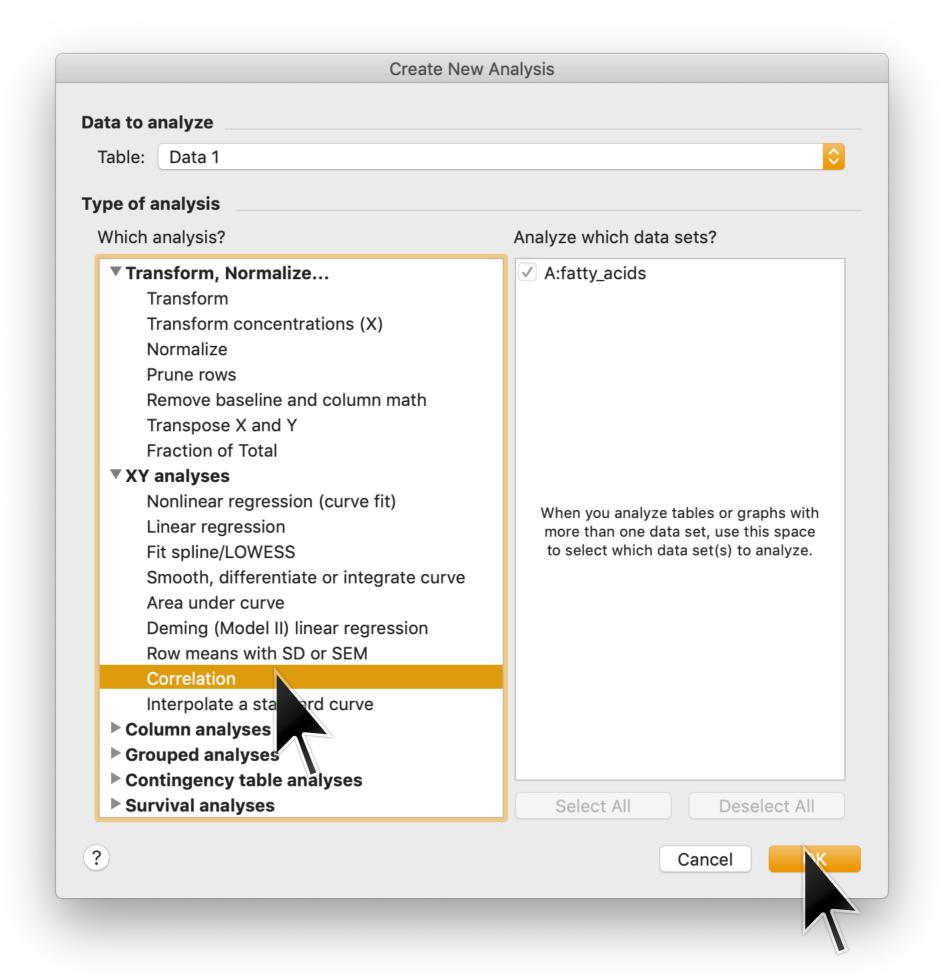
Errer: Mean, SD, N

Prism Tips

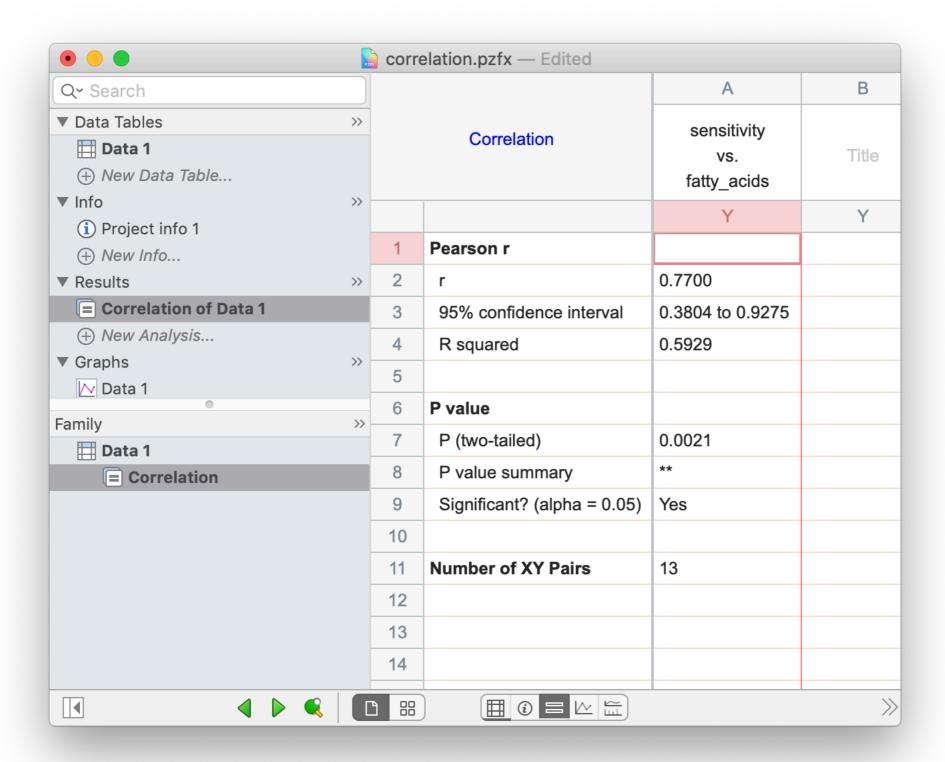
Cancel

Create





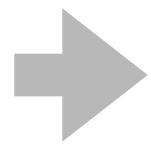
Parameters: Correlation	
Compute correlation between which pairs of columns?	
Compute r for every pair of Y data sets (Correlation matrix)	
Ocompute r for X vs. every Y data set:	
X: sensitivity \$	
Compute r between two selected data sets:	
X: sensitivity \$	
A: fatty_acids \$	
Assume data are sampled from Gaussian distributions?	
 Yes. Compute Pearson correlation coefficients 	
No. Compute nonparametric Spearman correlation	
Options	
P value: One-tailed Two-tailed	
Confidence interval: 95%	
Output	
Show this many significant digits (for everything except P values): 4	©
P Value Style: GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**),	\$
Graphing	
✓ Create a heatmap of the correlation matrix	
Make these choices the default for future analyses	
? Cancel OK	



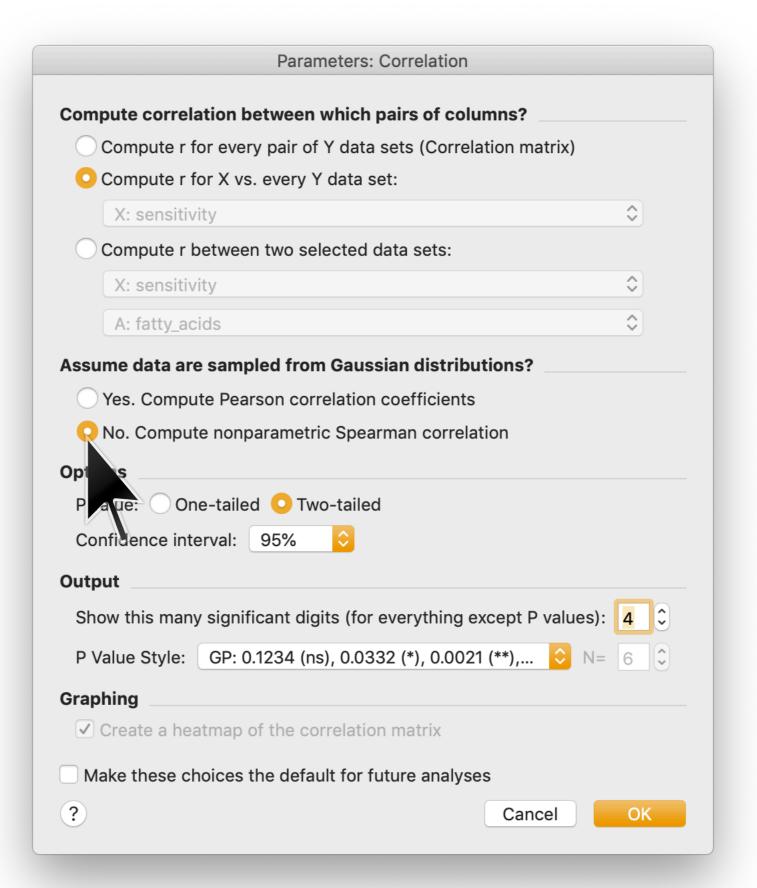
Spearman's rank correlation is a non-parametric measure of dependence

Spearman's ρ is just Pearson's r computed on the ranks of the x and y values which is a robust measure of correlation.

x	у
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375



x rank	y rank
1.0	6.0
2.5	4.0
2.5	2.0
4.5	1.0
4.5	5.0
6.0	3.0
7.0	9.0
8.0	12.0
9.0	10.0
10.0	7.0
11.0	8.0
12.0	13.0
13.0	11.0





Statistical power is the probability of detecting an effect that actually does exist.

power:

The probability of getting a statistically significant result if the null hypothesis actually is actually false.

power analysis:

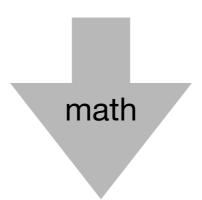
The process of assigning and/or computing four quantities (sometimes more) that describe one's experiment:

- 1. The sample size N
- 2. The false positive probability α (confidence = 1α)
- 3. The false negative probability β (power = 1β)
- 4. The anticipated effect size

Example: sex ratio

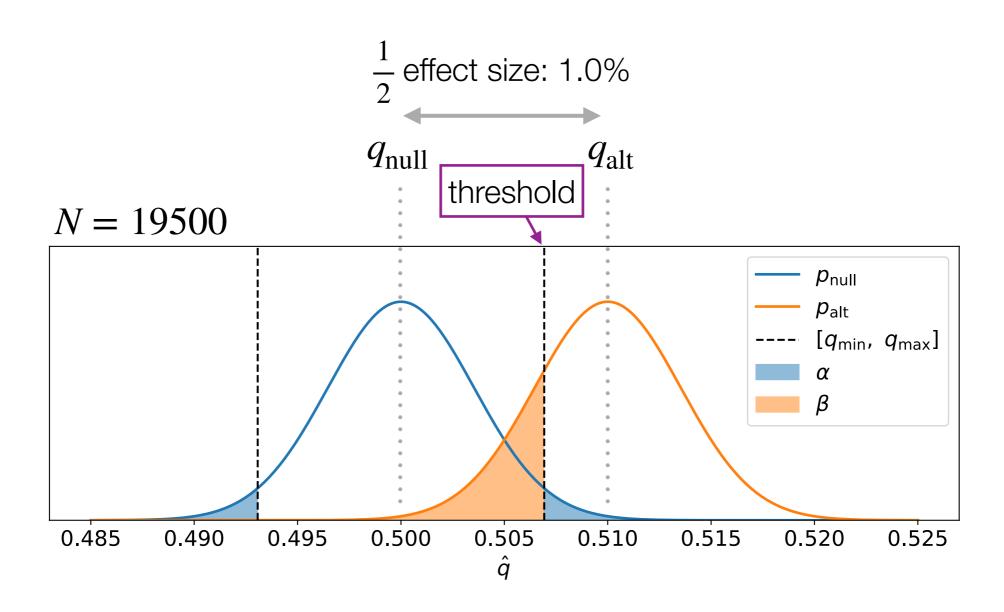
- 1. Confidence level: $1 \alpha = 95 \%$
- 2. Number of birth records: N = 19500
- 3. Hypothesized effect size: |p(boy) p(girl)| = 2%

The key parameter is
$$q=p(\mathrm{boy})$$
, so we use $q_{\mathrm{null}}=50\,\%$, $q_{\mathrm{alt}}=51\,\%$



4. We compute a statistical power of: $1 - \beta = 80 \%$

Statistical power example: sex ratio data



False Positive Probability: $\alpha = 0.05$

False Negative Probability: $\beta = 0.20$ (or 80% power)

Power analysis claims come in different forms

There are four relevant parameters: N, α , β , and effect size.

Power analysis involves <u>assuming values for any three parameters</u> and <u>computing the value of the forth</u>

"Controlling the false positive rate at $\alpha=5\,\%$, the statistical power at $1-\beta=80\,\%$, and assuming an effect size of $2\,\%$, our study will require using N=19500 birth records."

"Using N=19500 birth records, controlling the false positive rate at $\alpha=5\,\%$, and assuming a $2\,\%$ effect size, our study will have $1-\beta=80\,\%$ power."

"Controlling the false positive rate at $\alpha=5\,\%$, the statistical power at $1-\beta=80\,\%$, and using N=19500 birth records, our study will be sensitive to an effect size of $2\,\%$."

"Using N=19500 birth records, assuming an effect size of $2\,\%$, and holding the statistical power to $1-\beta=80\,\%$, our study will be able to hold the false positive rate to $\alpha=5\,\%$."

What if...

What happens to the sample size if:

- SD increases
- Power increases
- Detectable difference decreases
- Level of significance decreases

You will most likely do one of these two things:

You are supposed to do this:

- 1. Assume a false positive rate of $\alpha = 5\%$ (standard)
- 2. Assume a power of $1 \beta = 80 \%$ (standard)
- 3. Assume what you consider to be a biologically significant effect size
- 4. Compute & use the required sample size N.

You'll actually probably do this:

- 1. Assume a false positive rate of $\alpha = 5\%$ (standard).
- 2. Assume a power of $1 \beta = 80 \%$ (standard)
- 3. Assume a reasonable / affordable sample size ${\cal N}$
- 4. Compute & report the detectable effect size.

Power analysis example: body temperature

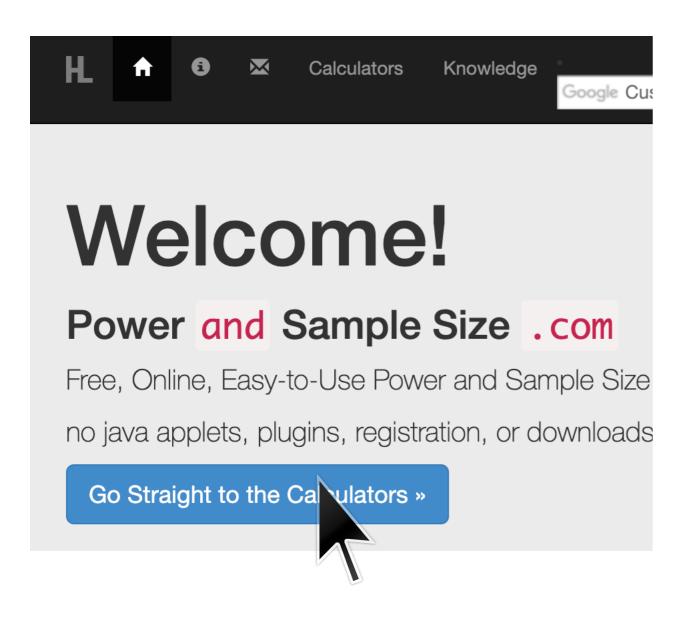
- 1. Assume a false positive rate of $\alpha = 5\%$ (standard).
- 2. Assume a power of $1 \beta = 80 \%$ (standard)
- 3. Assume what you consider to be a biologically significant effect size: $\Delta \mu = 0.1$ F. $\Delta \mu = 0.2$ F

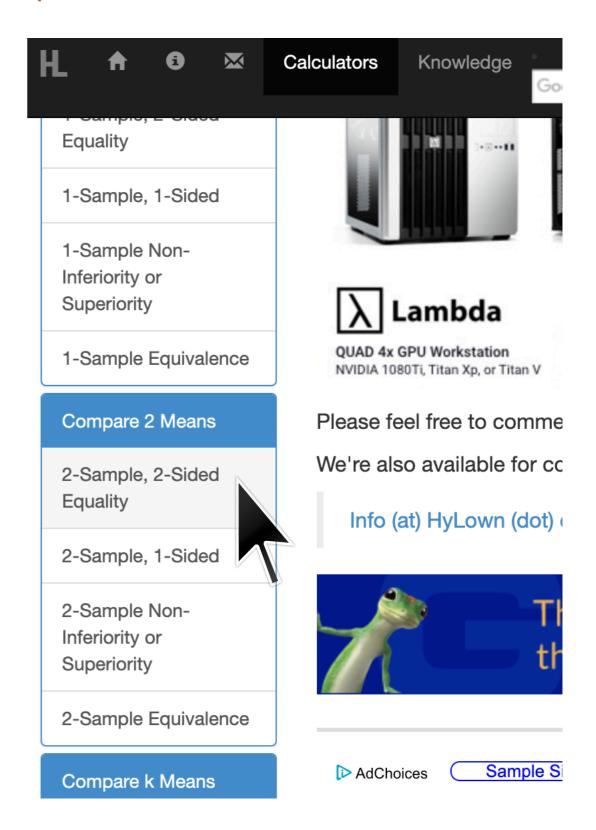
The key parameter is the "normalized effect size": $\frac{\Delta\mu}{\sigma}$ From preliminary data, we know $\sigma\approx 0.7~\mathrm{F}$

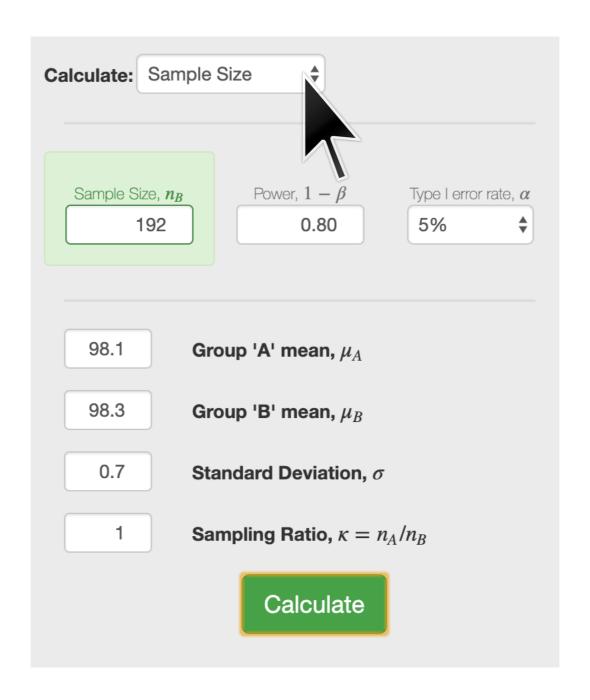
4. Compute the required sample size: N > 1540 N = 386 Too big! OK.

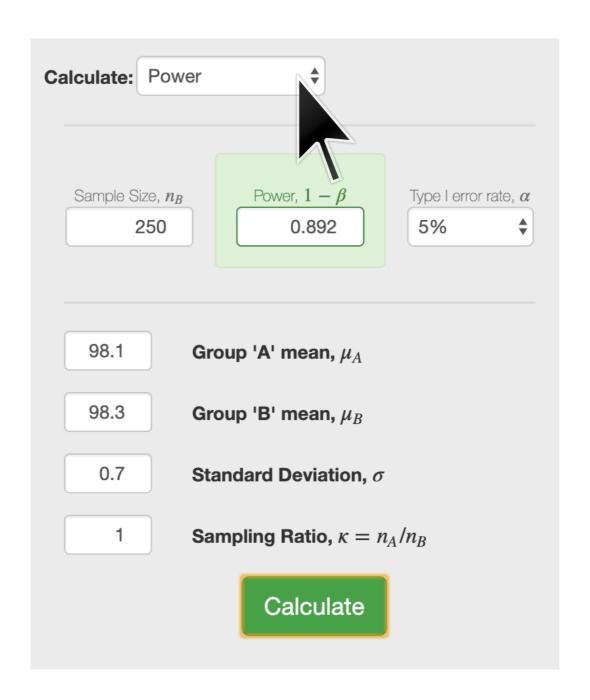
There are a number of online power analysis calculators

http://powerandsamplesize.com/

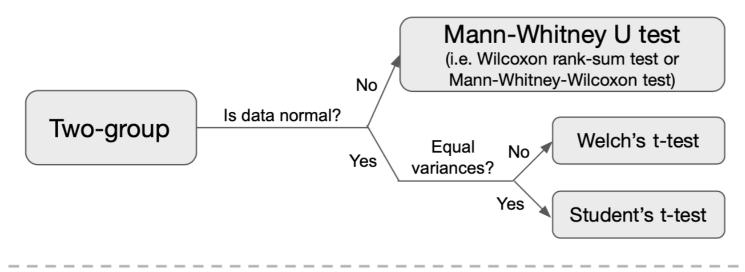






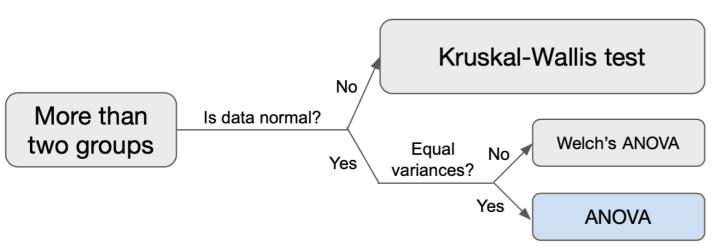


Where we stand: to compare numerical data in multiple independent groups



Assumptions:

- Errors should be random and independent
- Normality
- Homogeneity of variances



If assumptions violated,

- Transform your data and see if they meet assumptions
- If still violated, try nonparametric approach (Kruskal-Wallis test)

Fisher's solution: ANOVA (Analysis of Variance)

- · Idea: Instead of doing multiple pairs of comparisons, why don't we do a single test?
 - This test will tell us whether there is difference in any of the means.
 - We do multiple comparisons between pairs only after we know there is difference in means across the groups.

Hypotheses:

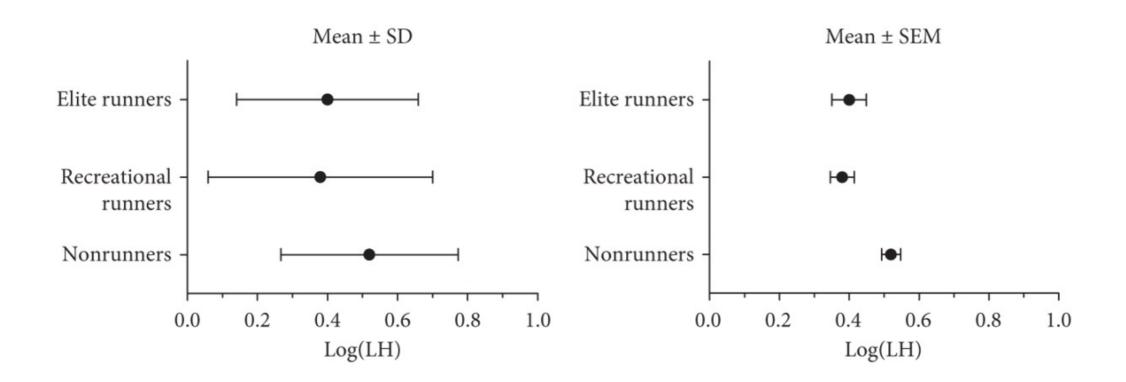
- H₀: All group means are the same. (H₀: $\mu_1 = \mu_2 = ... = \mu_p$)
- Ha: At least one group mean is different.

· Process:

- ∘ (p> α) fail to reject H₀ → all group means are the same → No further investigation
- (p<α) reject H₀ → At least one group mean is different → Post-hoc analysis (i.e., pairwise comparison) to identify which group(s) mean(s) are significantly different.

One-way ANOVA example: hormone levels in runners

Hetland et al. (1993) investigated the level of luteinizing hormone (LH) in runners. Runners were classified into three groups: elite runners, recreational runners, and nonrunners.



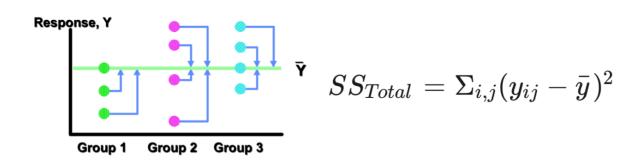
GROUP	LOG(LH)	SD	SEM	N
nonrunners	0.52	0.25	0.027	88
recreational runners	0.38	0.32	0.034	89
elite runners	0.40	0.26	0.049	28

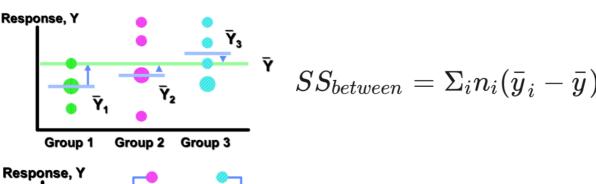
One-way ANOVA analyzes whether group means are significantly different

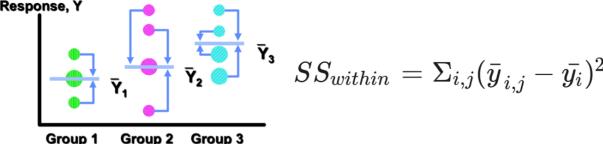
Null hypothesis: All group means are the same

Alternative hypothesis: At least one group mean is different

$$SS = \text{sum of squares} \qquad \sum_{i}^{SS_{\text{total}}} \sum_{i}^{SS_{\text{within}}} SS_{\text{within}} \qquad SS_{\text{between}} \\ \sum_{i}^{SS_{\text{total}}} (y_i - \hat{\mu})^2 = \sum_{i}^{SS_{\text{within}}} (y_i - \hat{\mu}_{g_i})^2 + \sum_{i}^{SS_{\text{total}}} (\hat{\mu}_{g_i} - \hat{\mu})^2$$







One-way ANOVA analyzes whether group means are significantly different

$$\sum_{i}^{SS_{\text{total}}} \sum_{i}^{SS_{\text{within}}} SS_{\text{between}}$$

$$\sum_{i}^{SS_{\text{total}}} (y_i - \hat{\mu})^2 = \sum_{i}^{SS_{\text{within}}} (y_i - \hat{\mu}_{g_i})^2 + \sum_{i}^{SS_{\text{between}}} (\hat{\mu}_{g_i} - \hat{\mu})^2$$

$$DF_{\text{within}} = N - G, \quad MS_{\text{within}} = \frac{SS_{\text{within}}}{DF_{\text{within}}}$$

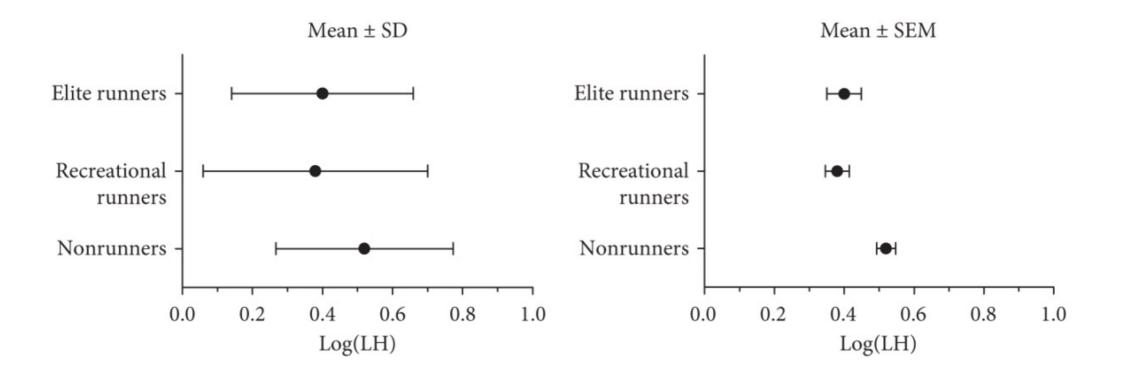
$$similar \text{ if null is true}$$

$$DF_{\text{between}} = G - 1, \quad MS_{\text{between}} = \frac{SS_{\text{between}}}{DF_{\text{between}}}$$

The corresponding F statistic is:
$$F = \frac{\text{MS}_{\text{between}}}{\text{MS}_{\text{within}}}$$
 $F \approx 1$ if null is true

The null hypothesis, implies that: $F \sim \text{FDist}(\text{DF}_{\text{between}}, \text{DF}_{\text{within}})$

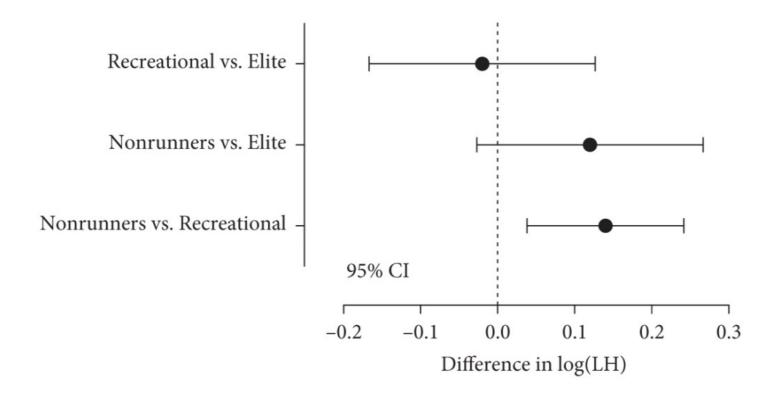
One-way ANOVA analyzes whether group means are significantly different



	SOURCE OF VARIATION	SUM OF SQUARES	DF	MS	F RATIO	P VALUE
	Between groups	0.93	2	0.46	5.69	0.0039
-	Within groups (resid.)	16.45	202	0.081		
=	Total	17.38	204			

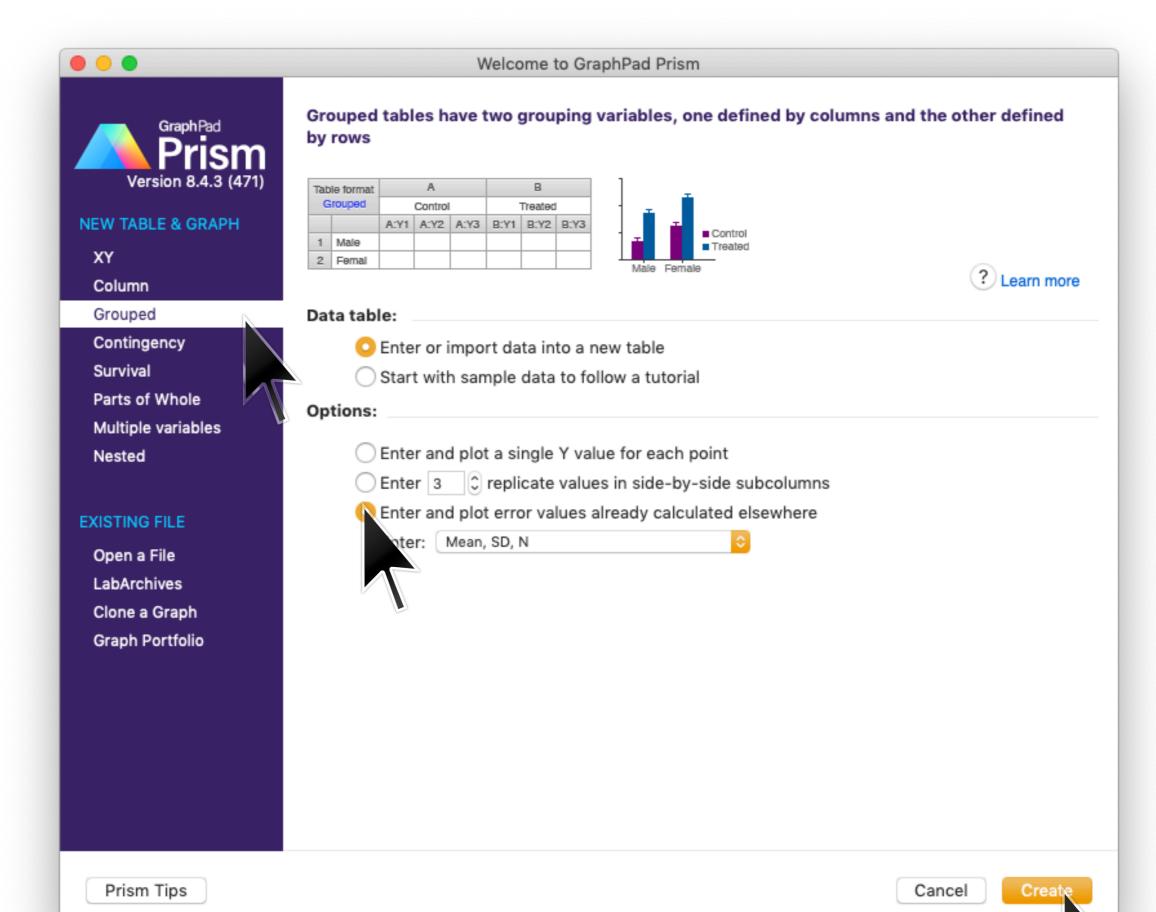
This shows that the at least one group have significantly different mean. It does **NOT**, however, tell which means are different. If there are differences in means, *post-hoc analysis* are typically required to identify which groups are different.

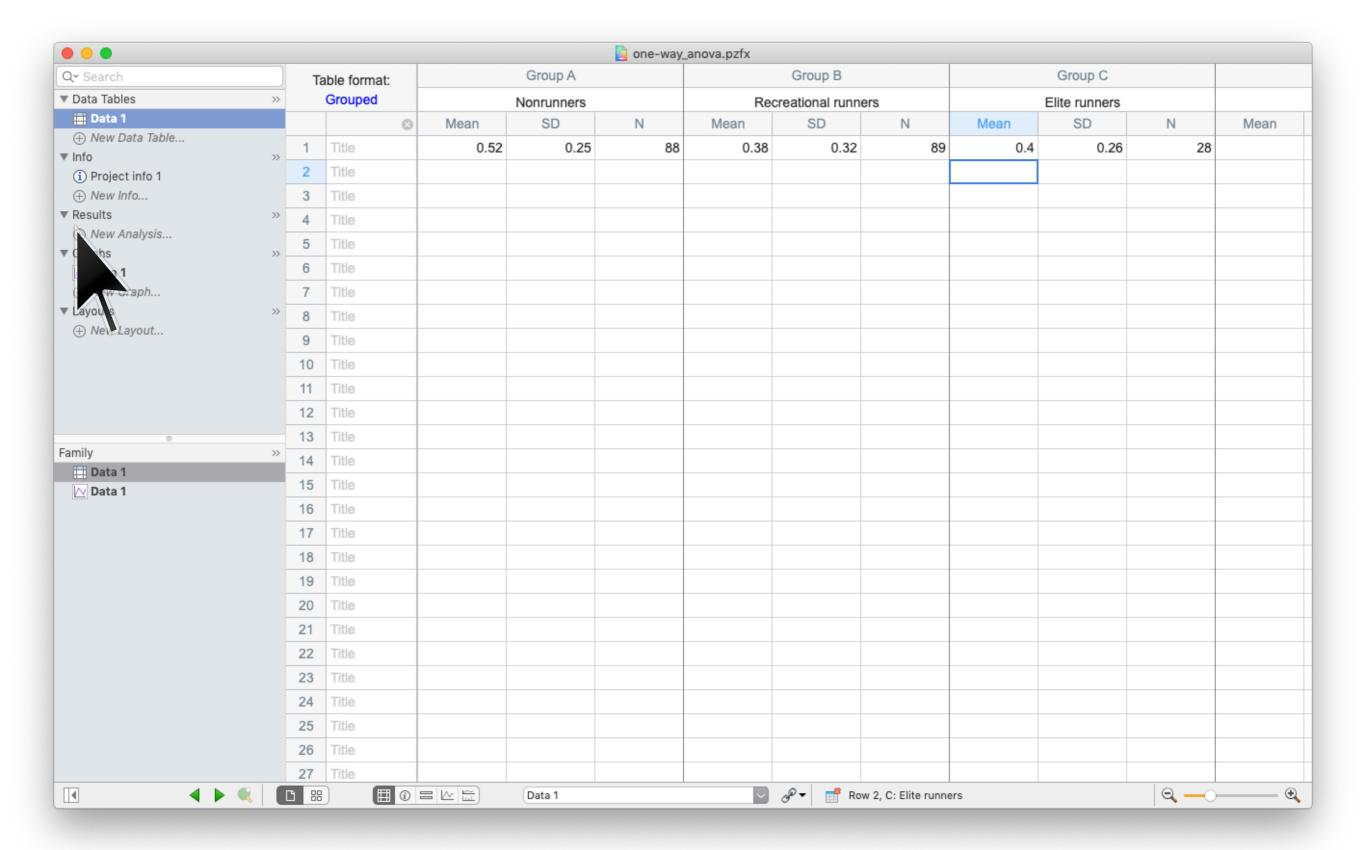
Tukey's test analyzes which pairwise comparisons in a one-way ANOVA, if any, are significant.

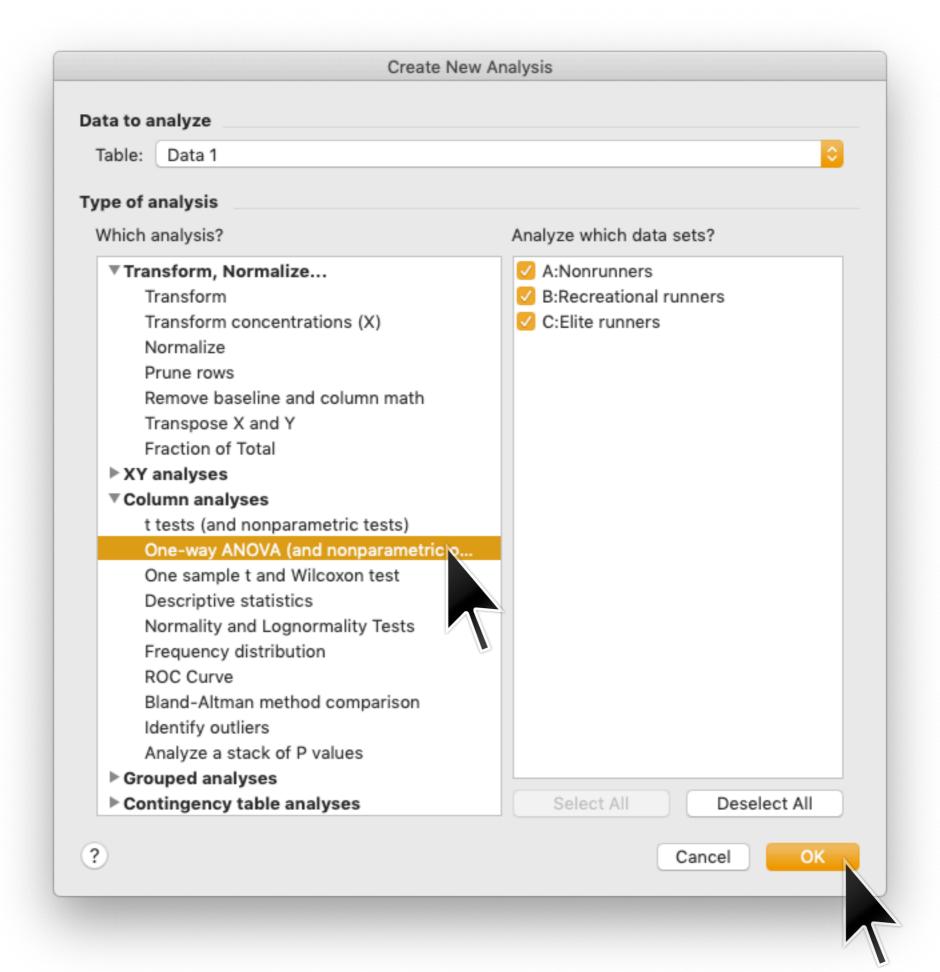


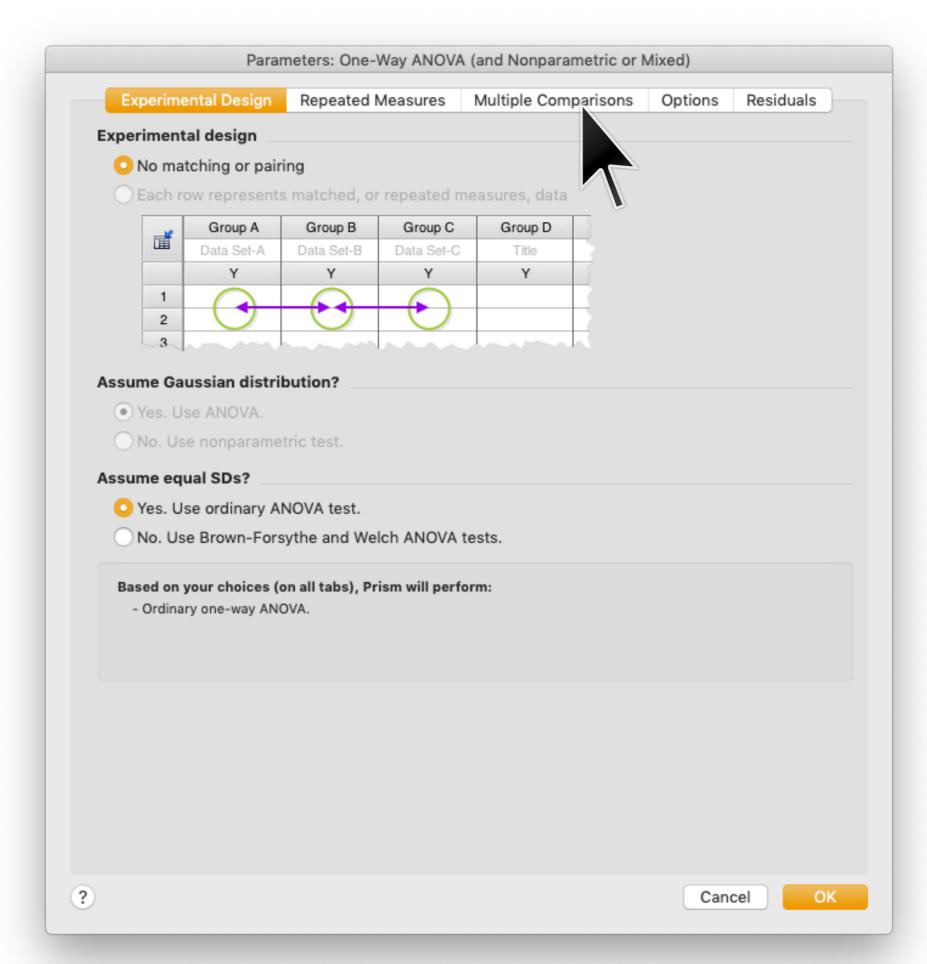
Tukey's test automatically incorporates the necessary multiple hypothesis correction into the test of significance.

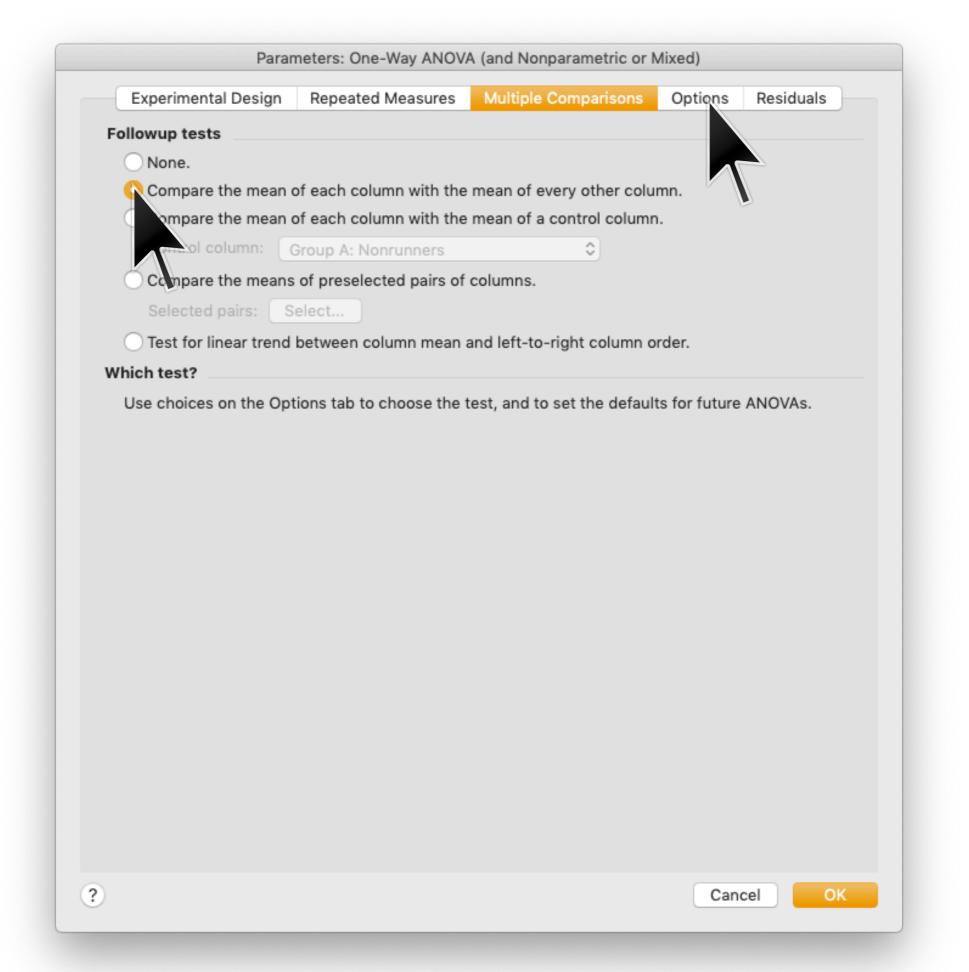
There are other ANOVA post-hoc tests as well.



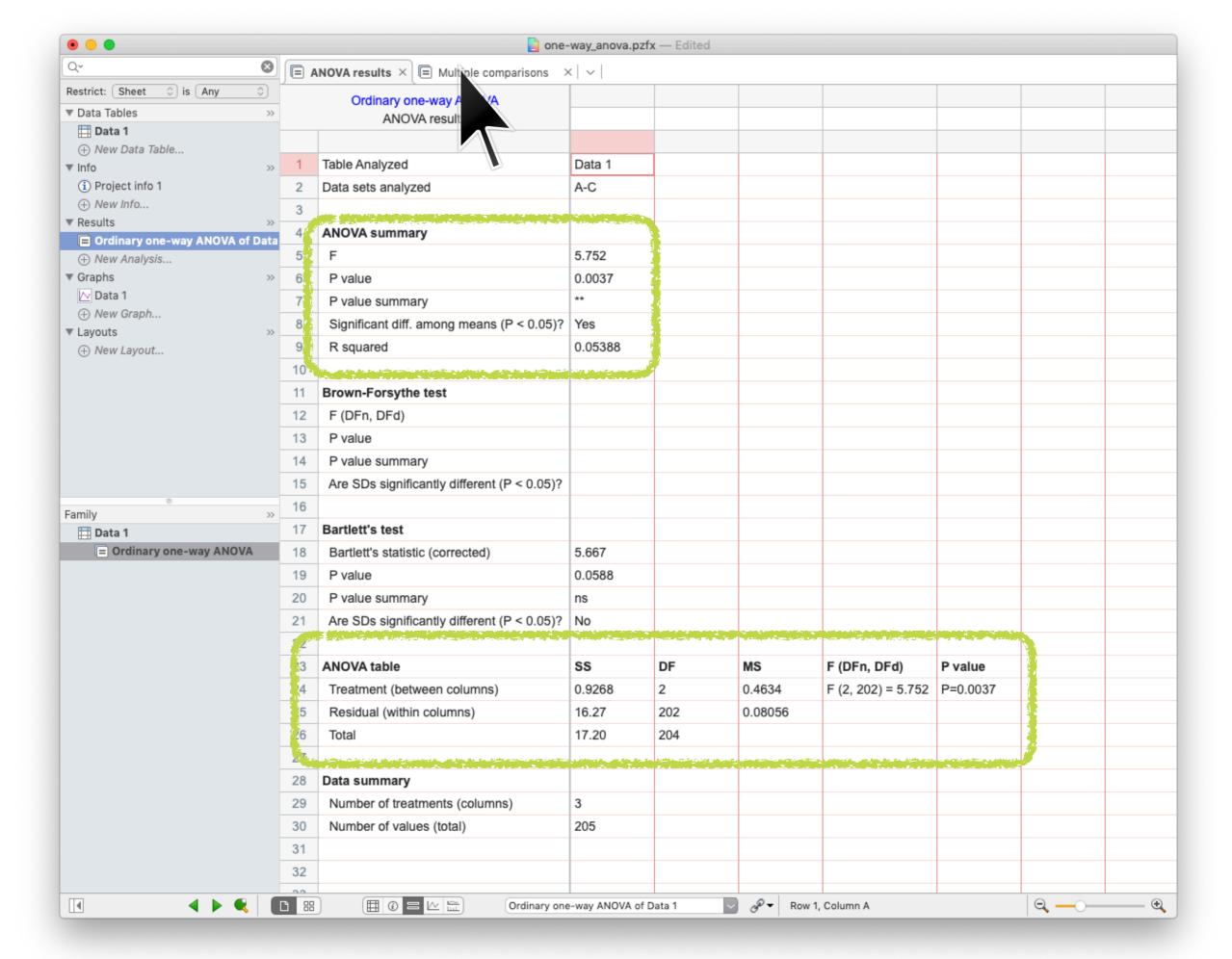


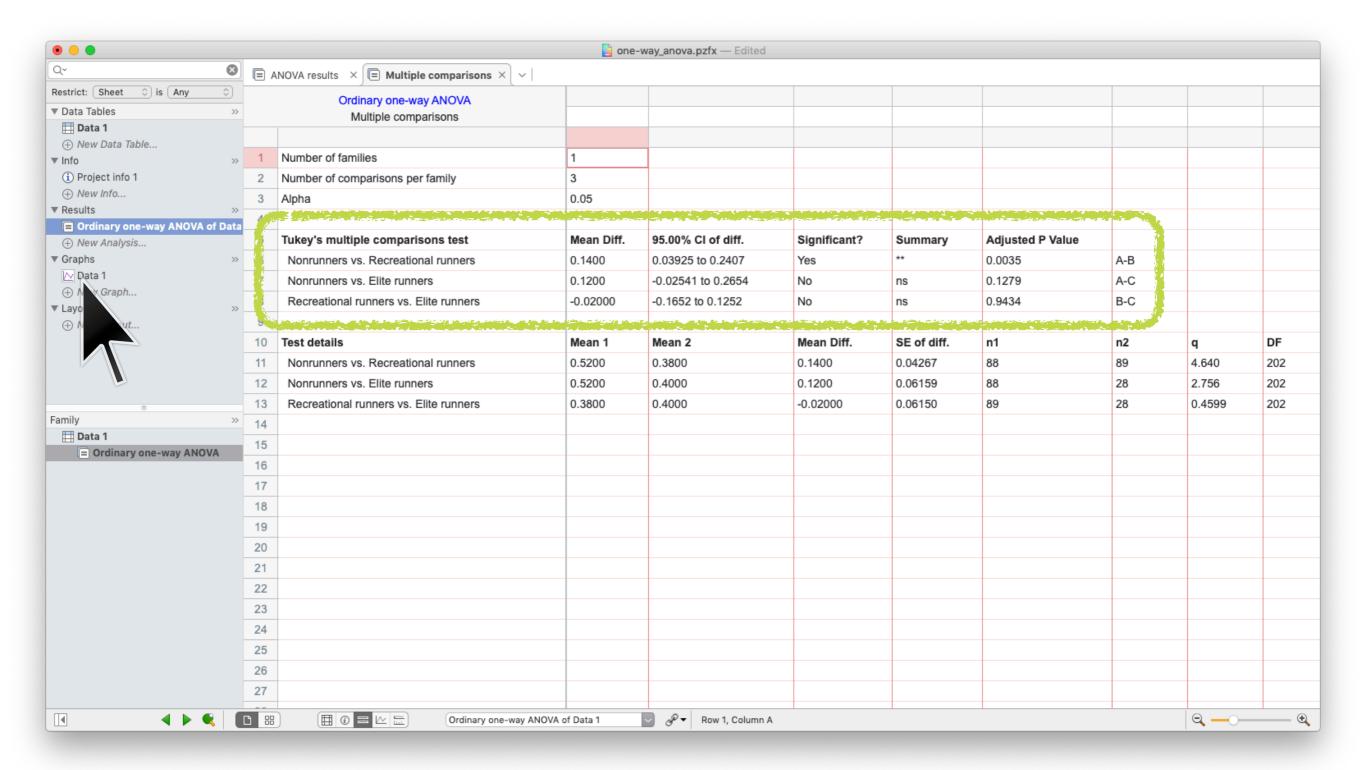


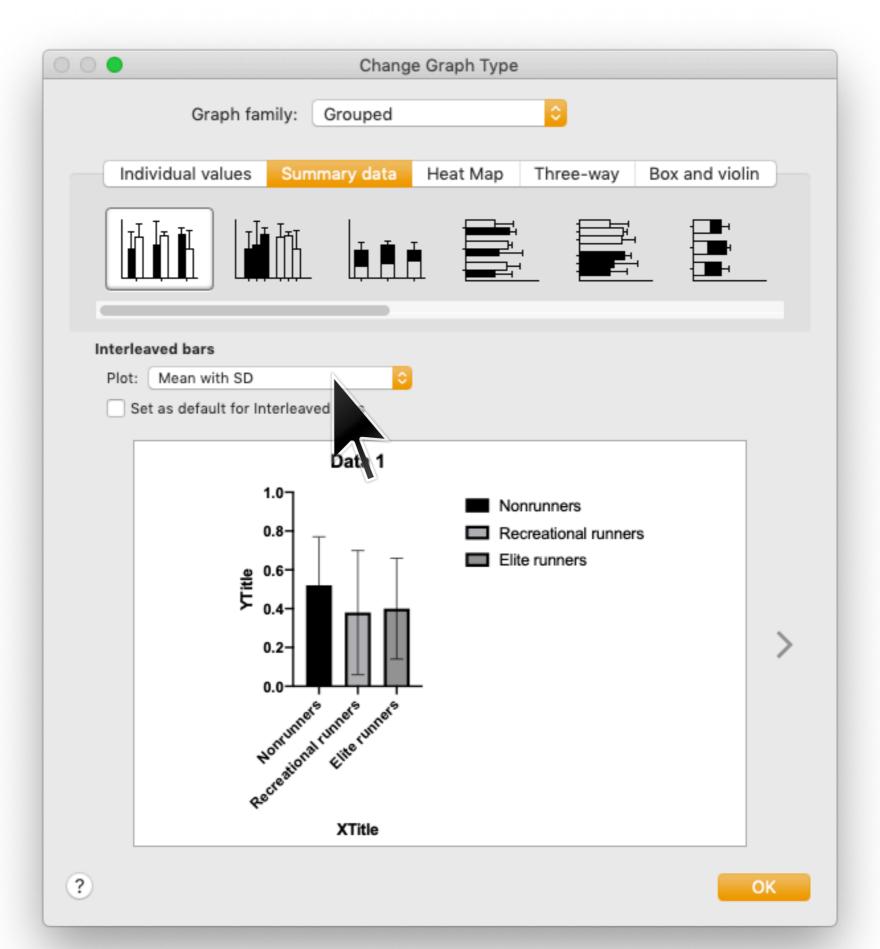




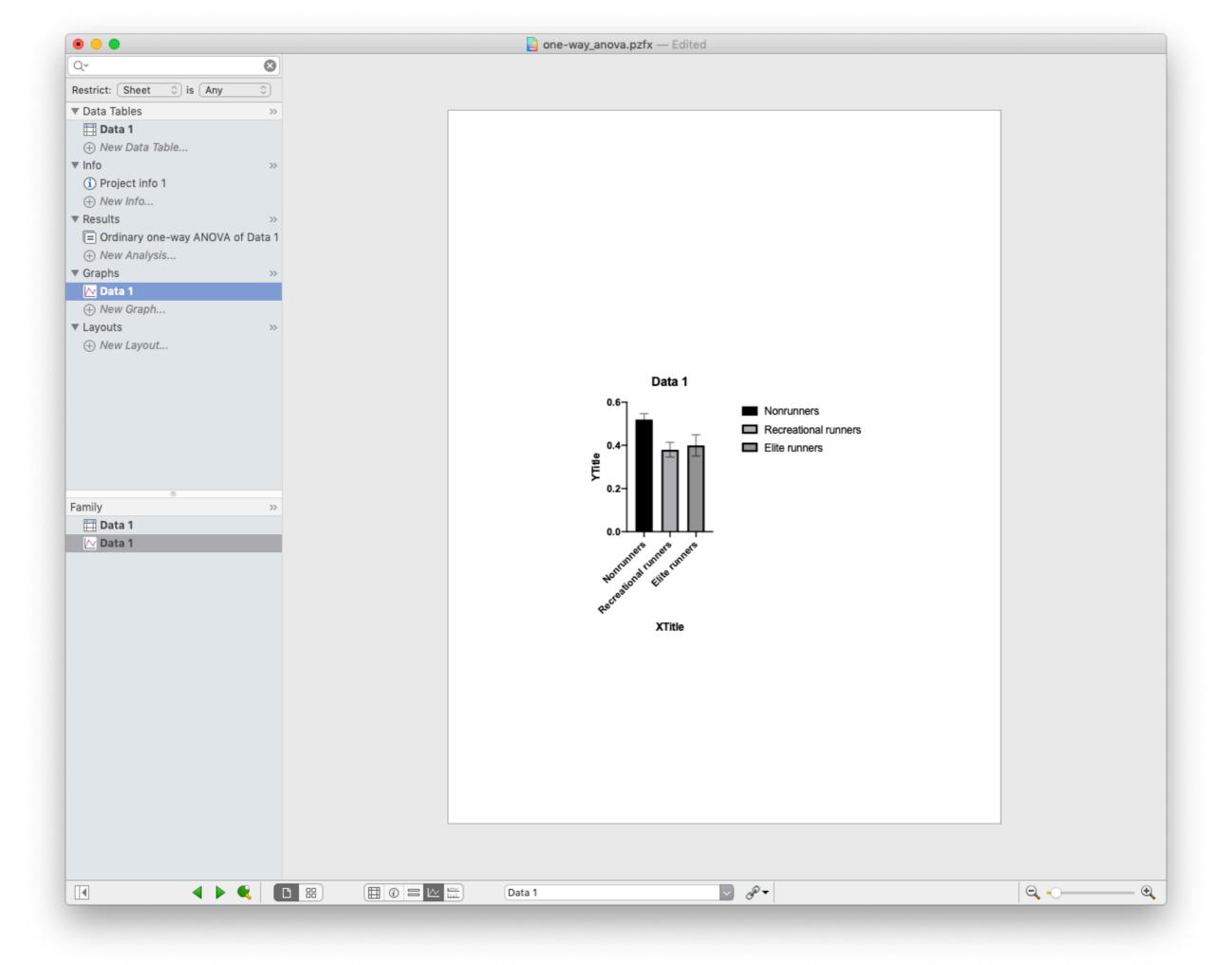
Paran	neters: One-Way ANOVA	(and Nonparametric or I	Mixed)
Experimental Design	Repeated Measures	Multiple Comparisons	Options Residuals
Multiple comparisons tes	st		
O Correct for multiple c	omparisons using statis	tical hypothesis testing. I	Recommended.
Test: Tukey (recom	mended)		<u> </u>
Orrect for multiple c	omparisons by controlli	ng the False Discovery Ra	ate.
Test: Two-stage st	ep-up method of Benjar	nini, Krieger and Yekutieli	(recommended) 🗘
On't correct for mult	tiple comparisons. Each	comparison stands alone).
Test: Fisher's LSD te	st		
Multiple comparisons op	tions		
Swap direction of cor	nparisons (A-B) vs. (B-A	A).	
Report multiplicity ad	justed P value for each	comparison.	
Each P value is adjusted	to account for multiple com	parisons.	
Family-wise significance	and confidence level:	0.05 (95% confidence	interval)
Graphing			
Graph confidence into	ervals.		
Graph ranks (nonpara	ametric).		
Graph differences (re	peated measures).		
Additional results			
Descriptive statistics	for each data set.		
Report comparison of			
Report goodness of f	it.		
Output			
Show this many significa	nt digits (for everything	except P values): 4	
P value style: GP: 0.12	234 (ns), 0.0332 (*), 0.00	021 (**), 0.0002 (***), <0.0	0001 (** 🗘 N= 6
Make options on this ta	b be the default for futu	re One-Way ANOVAs.	
			Ocean Col
			Cancel



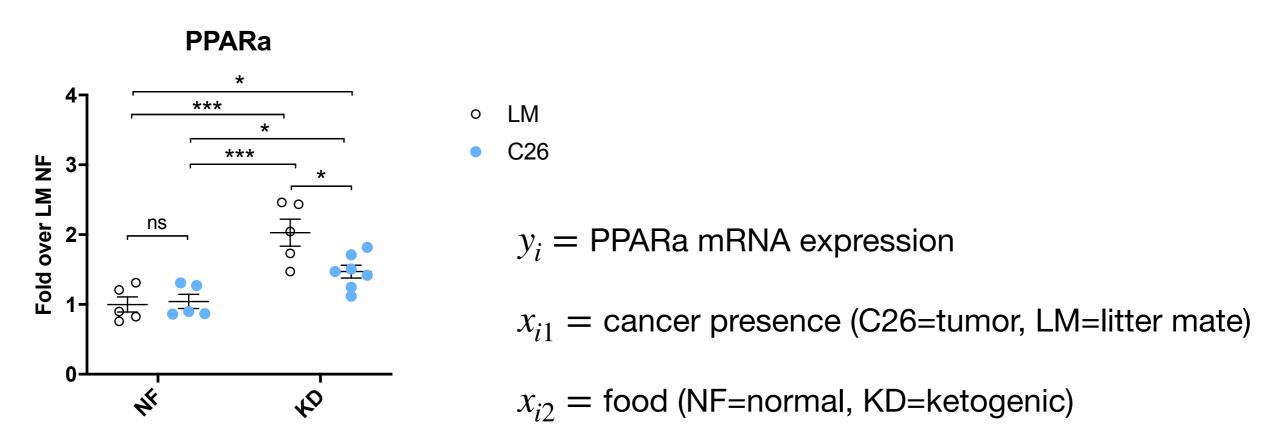








Two-way ANOVA tests whether to see if there is an interaction between groups



(data curtsey of Tobias Janowitz)

Null model:
$$y_i=\beta_0+\epsilon_i$$
 Alternative model #1: $y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\epsilon_i$ Alternative model #2: $y_i=\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+\beta_{12}x_{i1}x_{i2}+\epsilon_i$ interaction term

XY

Column

Grouped

Contingency

Survival

Parts of Whole

Multiple variables

Nested

EXISTING FILE

Open a File

LabArchives

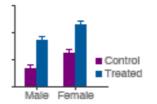
Clone a Graph

Graph Portfolio

Welcome to GraphPad Prism

Grouped tables have two grouping variables, one defined by columns and the other defined by rows

Table format			Α		В			
G	Grouped		Control		Treated			
		A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3	
1	Male							
2	Femal							



? Learn more

Da	ta	ta	b	le
$\mathbf{D}^{\mathbf{a}}$	ŧа	· a	ы.	

- O Enter or import data into a new table
- Start with sample data to follow a tutorial

Options:

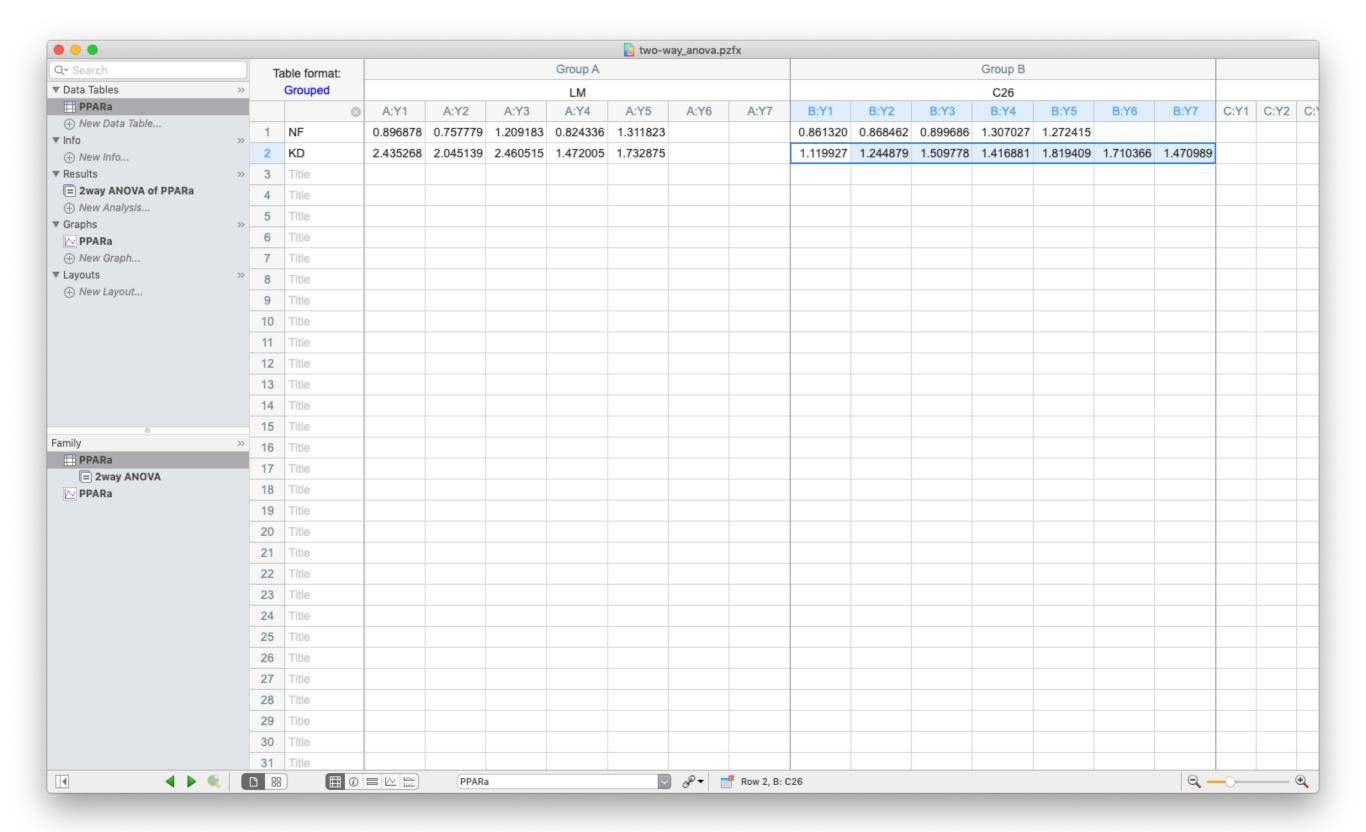
- Enter and plot a single Y value for each point
- O Enter 7 replicate values in side-by-side subcolumns
- Enter and plot error values already calculated elsewhere

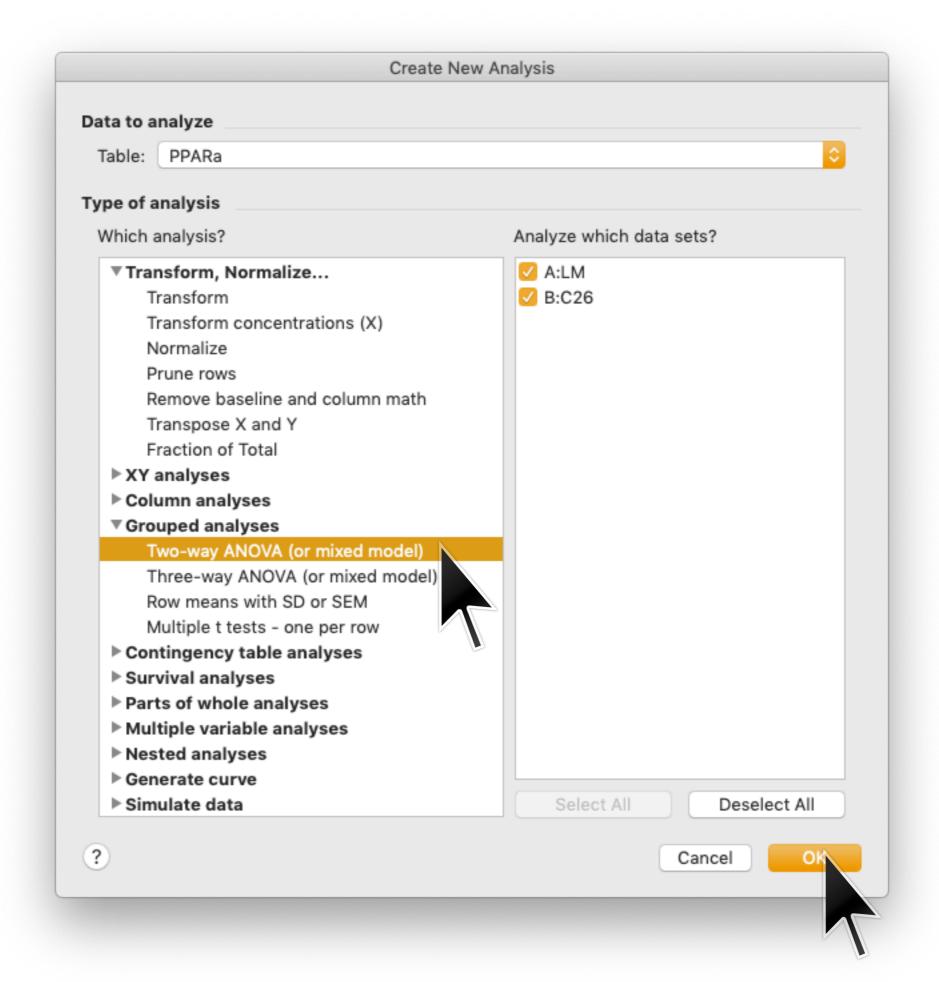
Enter: Mean, SD, N

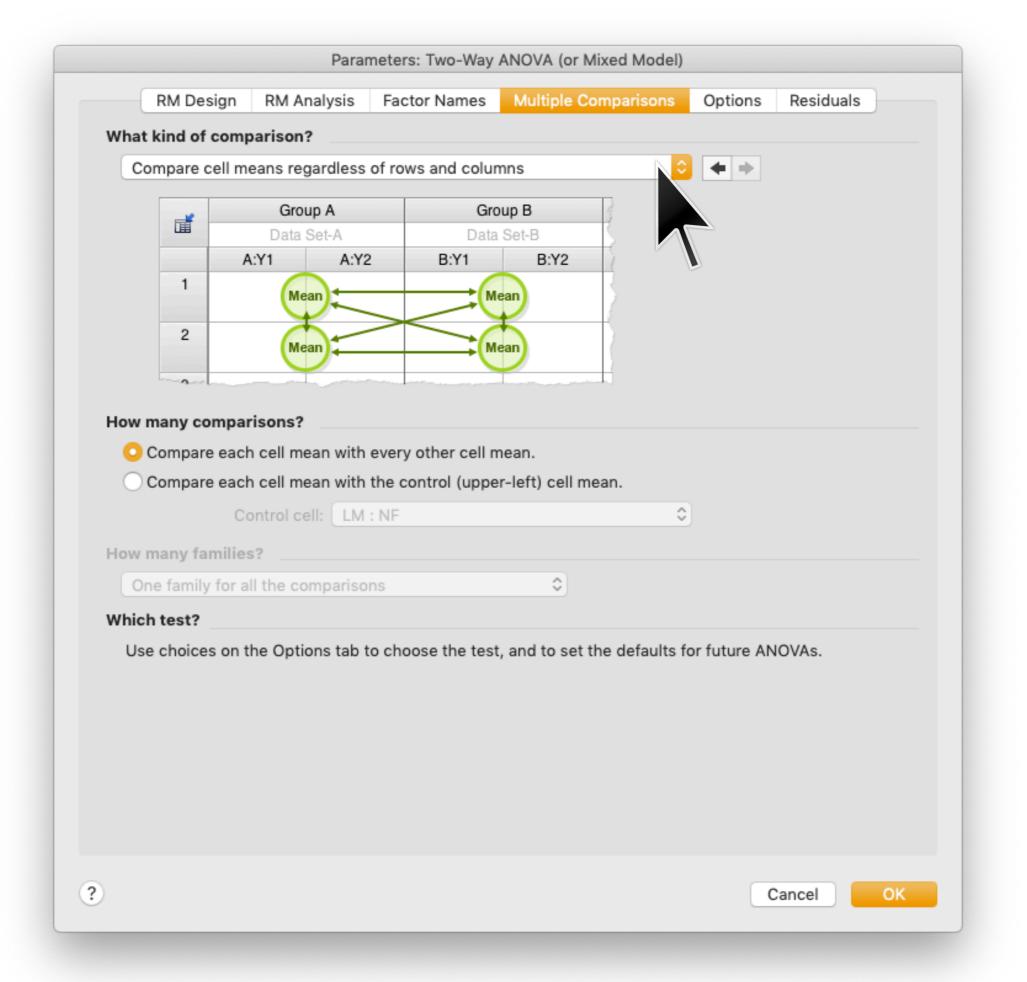
Prism Tips

Cancel

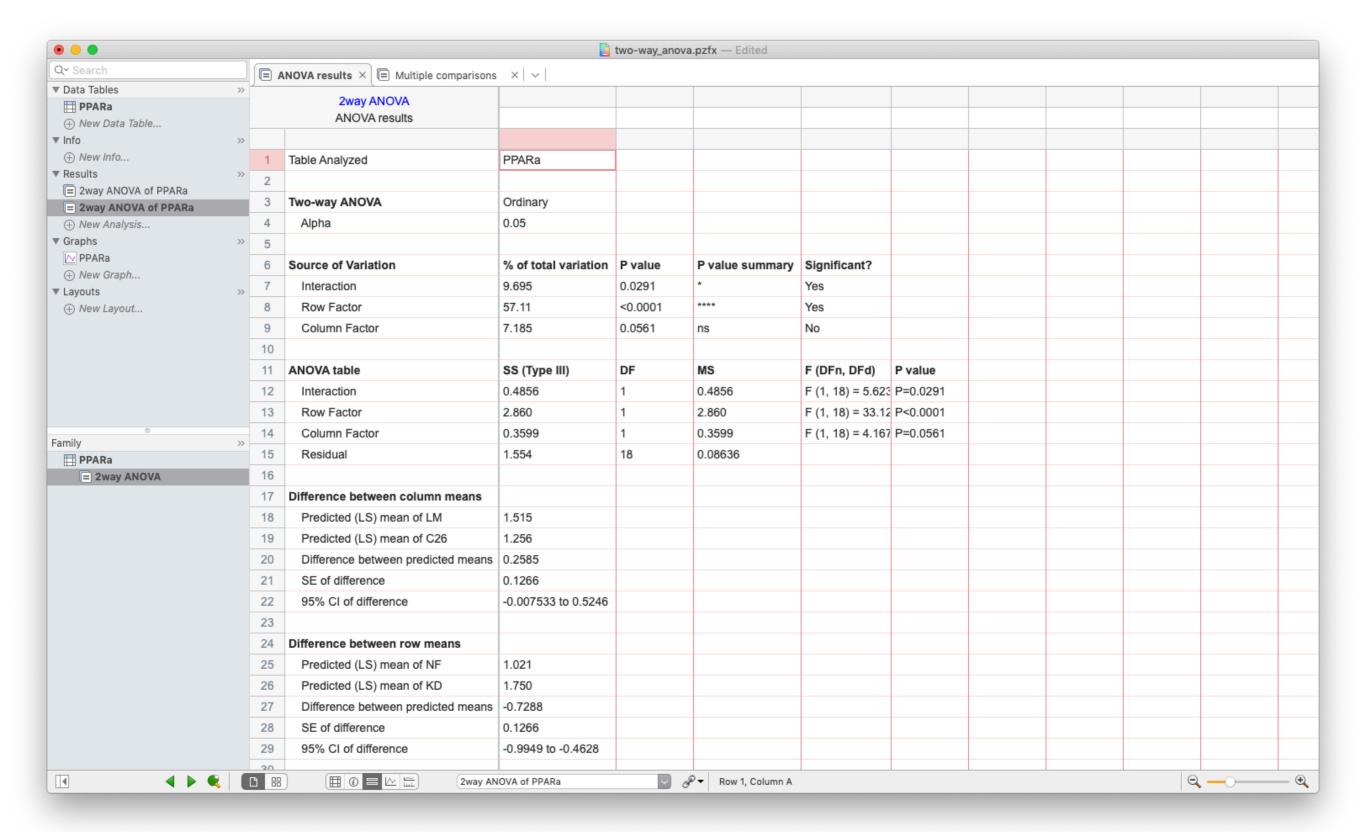
Create

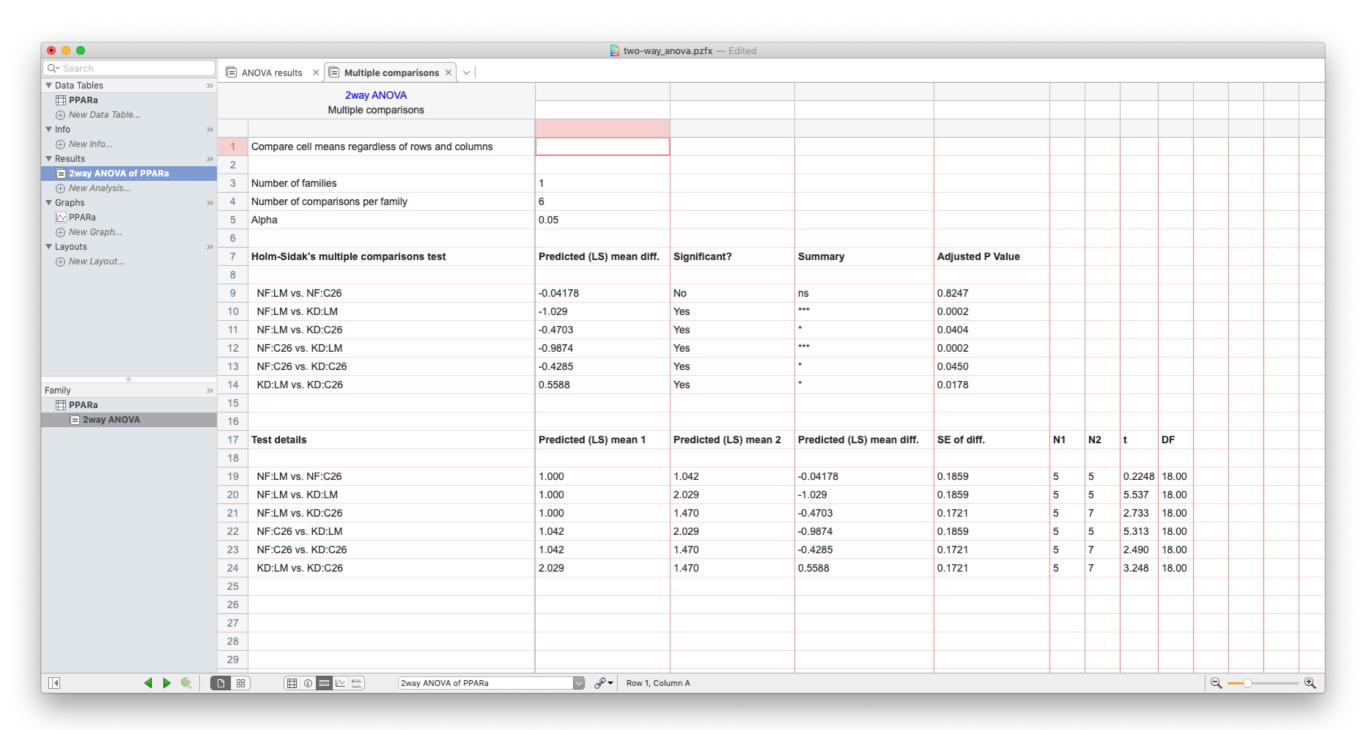


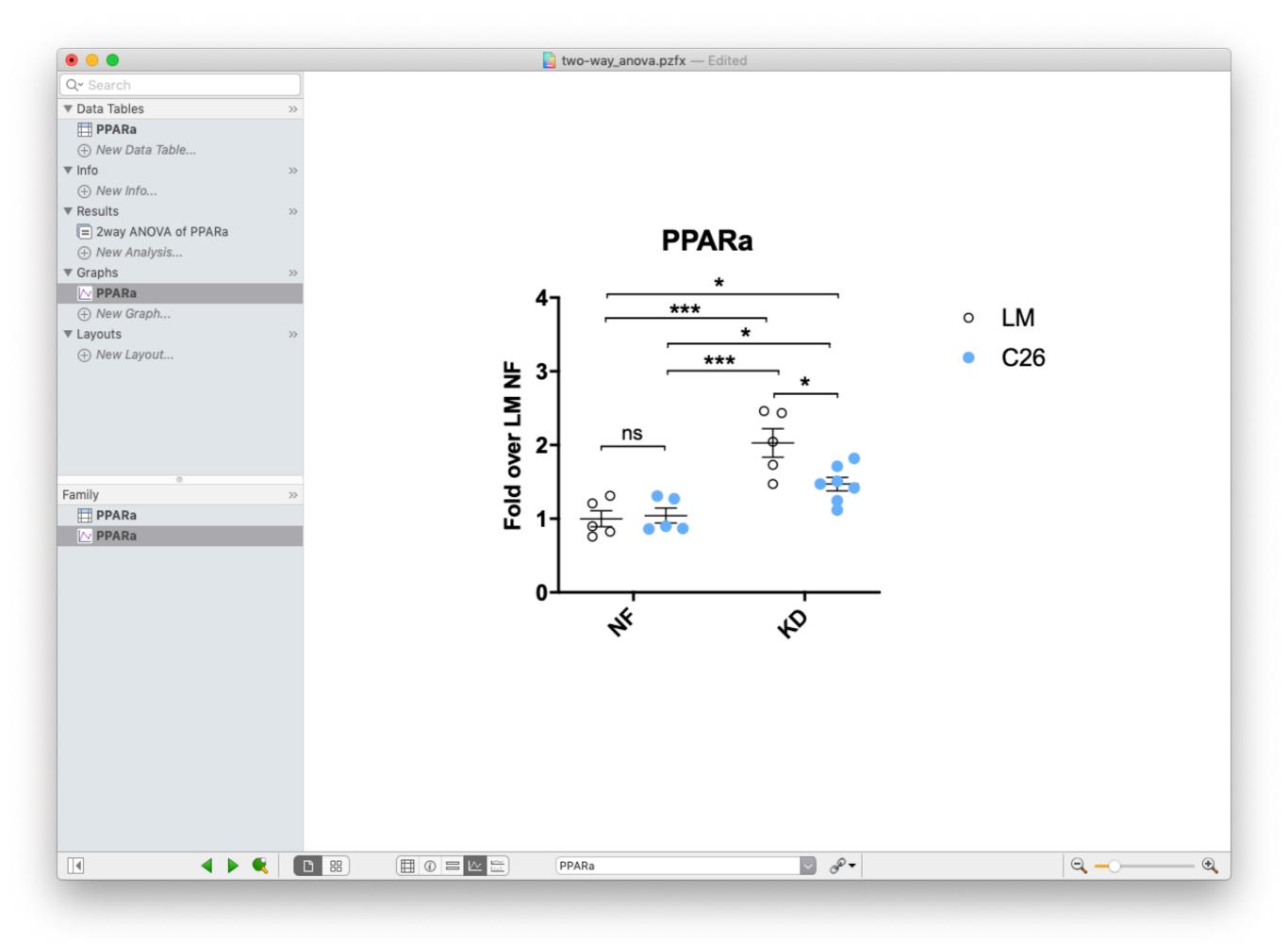


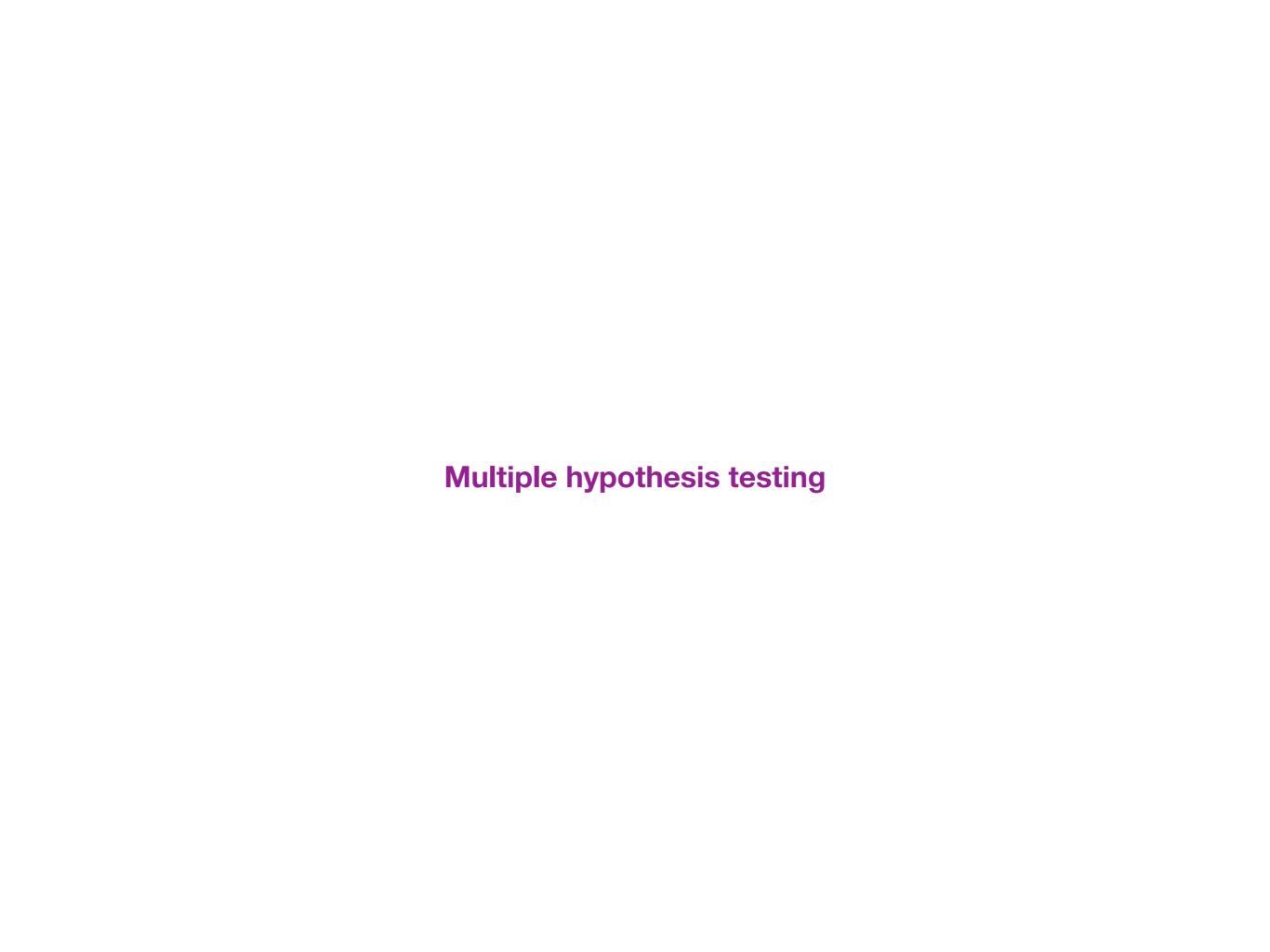


		Parar	neters: Two-Way	ANOVA (or Mixed Model)	
RN	1 Design	RM Analysis	Factor Names	Multiple Comparisons	Options Residuals
Multiple	comparis	ons test			
O Corr	ect for mu	ultiple compariso	ns using statistic	al hypothesis testing. Rec	commended.
Test	: Holm-	Sidak (more pov	ver, but can't com	pute confidence intervals	s) 🗘
Corr	ect for mu	ultiple compariso	ons by controlling	the False Discovery Rate	
Test	: Two-s	tage step-up me	ethod of Benjamir	i, Krieger and Yekutieli (r	ecommended
ODon	t correct	for multiple com	parisons. Each co	mparison stands alone.	
Test	:: Fisher's	LSD test			
Multiple	comparis	ons options			
Swa	p direction	n of comparison	s (A-B) vs. (B-A).		
Rep	ort multipl	icity adjusted P	value for each co	mparison.	
Each	P value is a	adjusted to accoun	t for multiple compa	risons.	
Family-	wise signi	ficance and con	fidence level:	0.05	<u> </u>
3raphing	options				
Grap	oh confide	nce intervals.			
Addition	al results				
Narr	ative resu	lts.			
Sho	w cell/row,	column/grand p	redicted (LS) me	ans.	
Rep	ort goodne	ess of fit.			
Output					
Show th	nis many s	ignificant digits	(for everything ex	ccept P values): 4	
P value	style:	GP: 0.1234 (ns),	0.0332 (*), 0.002	1 (**), 0.0002 (***), <0.00	001 (****)
Make	options or	this tab be the	default for future	Two-Way ANOVAs.	

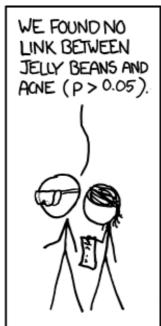


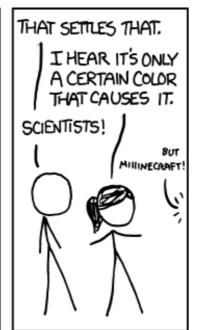


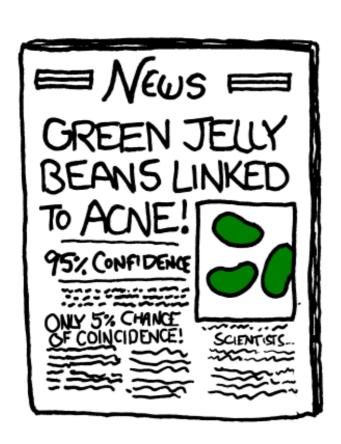


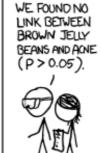


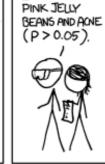
The problem of multiple subgroups





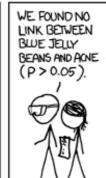


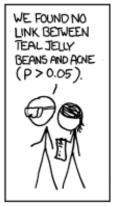




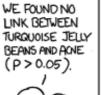
WE FOUND NO

LINK BETWEEN





WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO
LINK BETWEEN
MAGENTA JELLY
BEANS AND ACNE
(P>0.05).

WE FOUND NO
LINK BETWEEN
YELLOW JELLY
BEANS AND ACNE
(P>0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

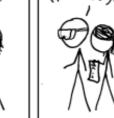
WE FOUND A LINK BETWEEN GREEN JELLY GEANS AND ACNE

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETVEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETVEEN LILAC JELLY BEANS AND ACNE (P > 0.05),

WE FOUND NO
LINK BETWEEN
BLACK JELLY
ONE BEANS AND ACNE
). (P > 0.05).



WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND AONE (P>0.05).

The family-wise error rate increases rapidly with the number of tests performed

Scenario:

we perform null hypothesis tests on K independent datasets, for each of which the null hypothesis is true.

Family-wise error rate:

Probability of having at least one false positives in multiple comparisons

$$p(FP \ge 1 | \text{null hypothesis}) = 1 - \text{confidence}^K$$

FWER for different number of comparisons given different significance levels:

	1	3	6	10	15	21	28	36	45
0.05	0.05	0.14	0.26	0.4	0.54	0.66	0.76	0.84	0.90
0.01	0.01	0.03	0.06	0.1	0.14	0.19	0.25	0.30	0.36

Summary of multiple hypothesis correction techniques

Approach	What you control	Expression
No correction	lpha: if all null hypotheses are true, the <u>fraction of tests</u> that produce a significant result	$\alpha = \frac{\text{FP}}{\text{FP} + \text{TN}}$
Bonferroni / Dunn-Sidak	lpha: if all null hypotheses are true, the <u>chance of obtaining one or more</u> significant results	$\alpha = p(\text{\#FP} > 0)$
False discovery rate (FDR)	$oldsymbol{\mathcal{Q}}$: the fraction of all discoveries for which the null hypothesis is actually true	$Q = \frac{\text{FP}}{\text{FP} + \text{TP}}$

Simple ways to counteract the multiple hypothesis problem

Bonferroni correction:

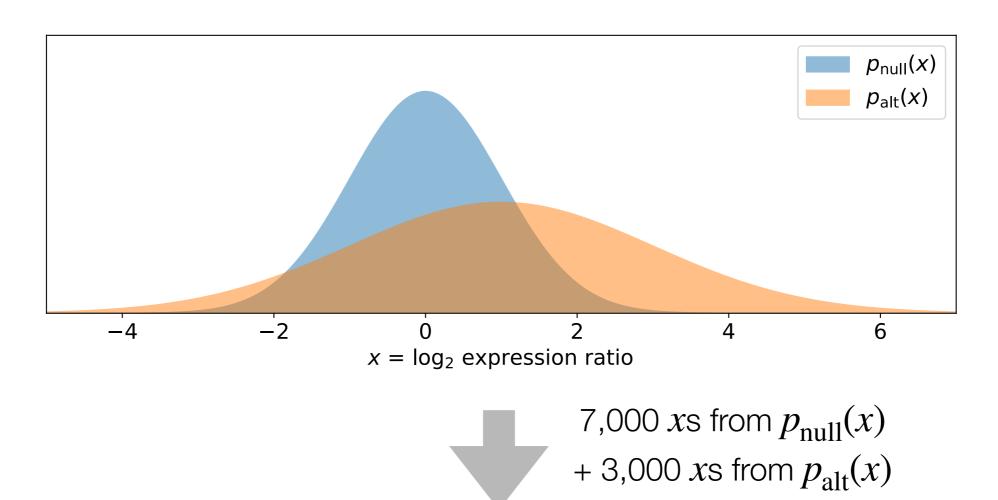
$$\alpha_{\text{Bonferroni}} = \frac{\alpha}{K}$$

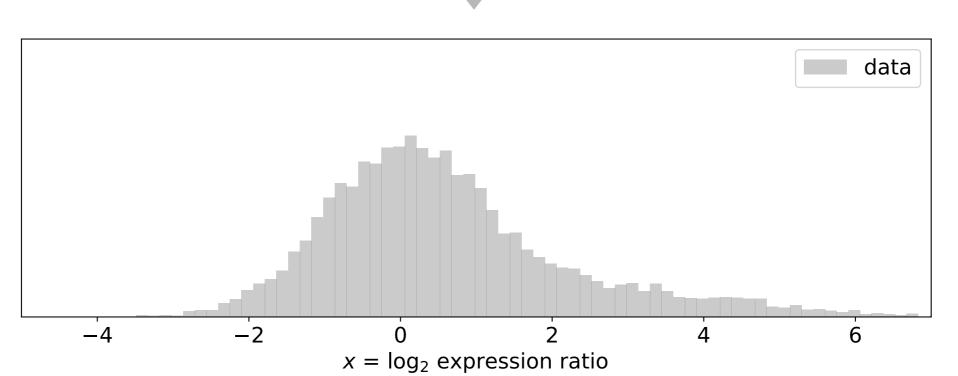
Dunn-Sidak correction:

$$\alpha_{DS} = 1 - (1 - \alpha)^{1/K}$$

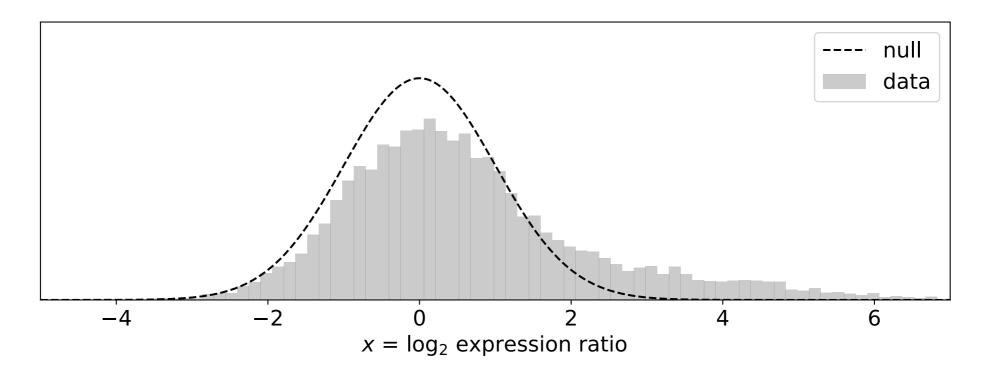
Dunn-Sidak is the exact solution; Bonferroni is an approximation

Example: differential expression (simulation)

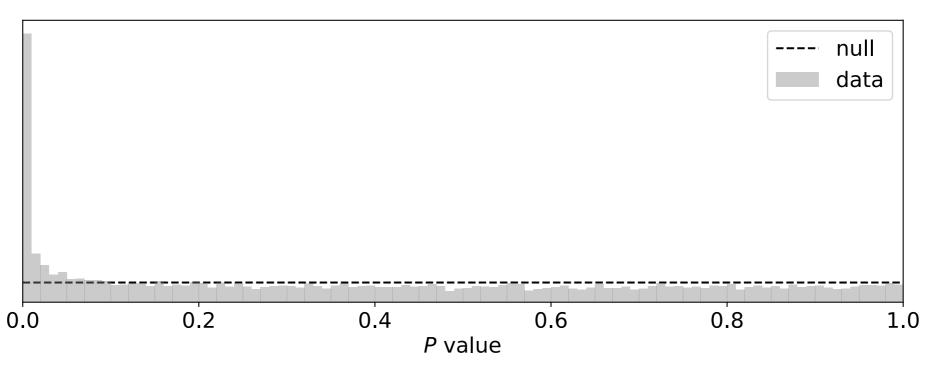


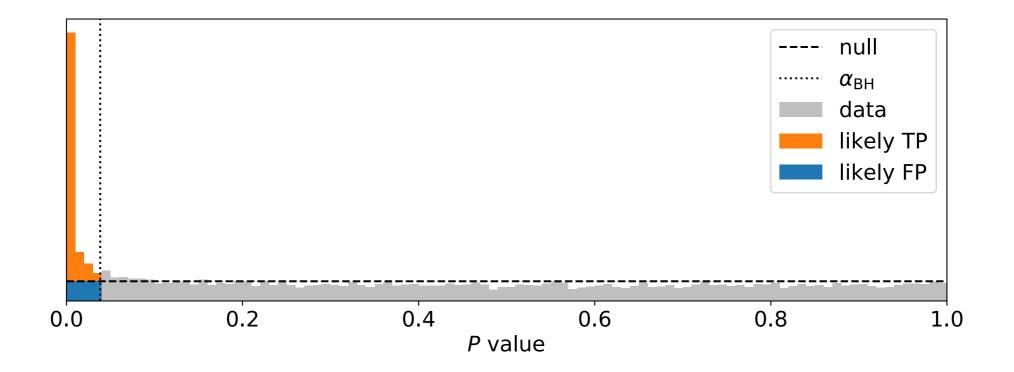


First, convert data to p-values



use knowledge of $p_{\rm null}(x)$ to compute a p-value for each datapoint





Choose α_{BH} such to match the target False Discovery Rate (10% here):

$$FDR = Q = \frac{FP}{TP + FP} = \frac{\blacksquare}{\blacksquare + \blacksquare}$$

Declare all P-values below α_{BH} as "discoveries".

Multiple comparisons are ubiquitous and insidious

"Most scientists are oblivious to the problems of multiplicities. Yet they are everywhere. In one or more of its forms, multiplicities are present in every statistical application. They may be out in the open or hidden. And even if they are out in the open, recognizing them is but the first step in a difficult process of inference. Problems of multiplicities are the most difficult that we statisticians face. They threaten the validity of every statistical conclusion."

Multiple comparisons arise in many many contexts

multiple subgroups:

You perform tests on multiple subgroups of your data.

multiple ways to dichotomize:

You do pairwise comparisons between different combinations of subgroups.

multiple sample sizes:

You keep collecting data until you find P < 0.05. DO NOT DO THIS.

multiple ways to preprocess the data:

You analyze data preprocessed in multiple different ways.

multiple statistical tests:

You use different statistical tests on the same data before finding P < 0.05.

Multiple comparisons arise in many, many contexts

multiple ways to select relevant variables:

You try to model your data using different subsets of possible variables.

multiple ways to analyze your data ("garden of forking paths"):

You try lots of qualitatively different analysis strategies.

outcome switching:

You change the quantity you care about after you've looked at the data.

multiple geographic areas:

E.g., you investigate a "cancer cluster" you hear about in the news.

Correcting for multiple comparisons is not always needed

Scenario 1:

If readers can be reasonably expected to account for multiple comparisons on their own.

Scenario 2:

Before looking at the data, you have clearly defined one outcome as primary and others as secondary.

Scenario 3:

You make only a few planned comparisons and your P-values are not marginal.

Scenario 4:

A large fraction the tests you perform are significant.

Raise your standards: use $\alpha = 0.01$, not $\alpha = 0.05$.

Separate exploratory data analysis from confirmatory data analysis.

Distinguish <u>critical p-values</u> from <u>ancillary p-values</u>.

Don't spend too much time analyzing a small dataset.

When generating small expensive datasets (e.g. mice), blind your experiments as best you can, and plan your analysis ahead of time

When in doubt, double-check your hypothesis with new data

Don't worry about informal multiple hypothesis testing when $P < 10^{-4}$.

