Linear regression Nonlinear regression Survival analysis

Biostatistics Course 2024 Lecture 5 Friday, 12 July 2024 2:00pm - 4:00pm Linear regression

Linear regression seeks to explain y as a linear function of x plus Gaussian noise

Parameters are chosen to minimize the sum of squared deviations

 $y_i = a + bx_i + \epsilon_i$

The model "parameters", *a* and *b*, are chosen to minimize this quantity: $\sum_{i} \epsilon_{i}^{2}$.

This can be done mathematically, and one finds that,

$$b = r \frac{\hat{\sigma}_y}{\hat{\sigma}_x}$$
 and $a = \hat{\mu}_y - b\hat{\mu}_x$

Some properties of linear regression

The center of mass point of the data, $(\hat{\mu}_x, \hat{\mu}_y)$, lies on the regression line.

Confidence intervals (shaded region) are curved because of uncertainty in both a and b.

Any reported P-values correspond to the null hypothesis that b = 0.

Linear regression explains a fraction of the variance

model:
$$\hat{y}_i = a + bx_i$$

$$(n-1) \times \text{variance}$$
:

 r^2 is the fraction of variance explained:

$$r^{2} = \frac{\sum_{i} (\hat{y}_{i} - \hat{\mu}_{y})^{2}}{\sum_{i} (y_{i} - \hat{\mu}_{y})^{2}} = 0.593$$

		222	correl	ation.pzfx ~			
Q~ Search Tables				Х	Group A	Group B	Group Title
				sensitivity	fatty_acids	Title	
📕 Data 1			8	Х	Y	Y	Y
🕀 New Data Table	-	1	Title	250	17.9		
▼ Info	>>	2	Title	220	18.3		
(i) Project info 1	-	3	Title	145	18.3		
(+) New Info		4	Title	145	10.0		
Results Gerrelation of Data 1	>>	4	Thue	115	18.4		
	-	5	Title	230	18.4		
(+) New Analysis		6	Title	200	20.2		
		7	Title	330	20.3		
Fam	>>	8	Title	400	21.8		
🔲 Data 1		9	Title	370	21.9		
Correlation	-	10	Title	260	22.1		
🗠 Data 1	-	11	Titlo	270	23.1		
	-	10	THE	270	23.1		
	-	12	litle	530	24.2		
	-	13	Title	375	24.4		
		14	Title				
		15	Title				

able: Data 1	
be of analysis	
/hich analysis?	Analyze which data sets?
Transform, Normalize	A:fatty_acids
Transform	
Transform concentrations (X)	
Normalize	
Prune rows	
Remove baseline and column math	
Transpose X and Y	
Fraction of Total	
▼ XY analyses	
Nonlinear regression (curve fit)	When you analyze tables or graphs with
Linear regression	more than one data set, use this space
Fit spline/LOWESS	to select which data set(s) to analyze.
Smooth, differentiate or interaction curve	
Area under curve	
Deming (Model II) linear regression	
Row means with SD or SEM	
Correlation	
Interpolate a standard curve	
Column analyses	
Grouped analyses	
Contingency table analyses	
Survival analyses	Select All Deselect All

Interpolate	
Interpolate	unknowns from standard curve
Compare	
Test wheth	ner slopes and intercepts are significantly different
Graphing optio	ns
Show the	95% confidence bands 📀 of the best-fit line
sidual pl	lot
Cor a tain	
Force the I	ine to go through X = 0
Replicates	
O Consider e	ach replicate Y value as individual point
 Only consi 	der the mean Y value of each point
Also calculate	
Test depar	ture from linearity with runs test
V 95% confic	dence interval of Y when X = 0
🗹 95% confic	dence interval of X when Y = 0 3
Range	
Start regression	on line at: End regression line at:
O Auto	O Auto
X = 115	$\mathbf{O} = \mathbf{O} \mathbf{X} = \mathbf{O} \mathbf{O}$
Output options	
Show this mar	ny significant digits (for everything except P values): 4
P Value Style:	GP: 0.1234 (ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****) 📀 N= 6 🗘
Make these d	choices as default for future regressions
? More ch	Cancel OK

Q~ Search		Г	Tabular results			
Data Tables	>>>			Δ	R	
🔜 Data 1			Linear reg. Tabular results	fottu asida	THE	
🕂 New Data Table	_			fatty_acids	litle	
▼ Info	>>	-		Ŷ	Ŷ	
(i) Project info 1		1	Best-fit values			
(+) New Info		2	Slope	0.01593		
Results	>>	3	Y-intercept	16.19		
E Linear reg. of Data 1		4	X-intercept	-1016		
New Analysis		5	1/slope	62.76		
▼ Graphs	>>	6				
Data 1	-	7	Std. Error			
(∓ →w Graph	-	8	Slope	0.003981		
▼ La ⊕ Nev Layout	>>	9	Y-intercept	1,213		
	-	10				
		11	95% Confidence Intervals			
0		10		0.007172 to 0.02170		
Family	>>	12	Siope	0.007172100.02470		
		13	Y-intercept	13.52 to 18.85		
Data 1	-	14	X-intercept	-2606 to -552.0		
		15				
		16	Goodness of Fit			
		17	R square	0.5929		
		18	Sy.x	1.571		
		19				
	-	20	Is slope significantly non-zero?			
		21	F	16.02		
	-	22	DFn, DFd	1, 11		
		23	P value	0.0021		
	-	24	Deviation from zero?	Significant		
				eigninount		

- The model is correct, i.e. the expected value for *y* is indeed a linear function of *x* for some correct choice of parameters.
- The noise (i.e. the residuals) is Gaussian and has mean zero.
- The residual for each data point is statistically independent
- The magnitude of the noise (i.e. variance of the Gaussian) is the same at all *x* values.
- Each x_i is known exactly.

As with correlation, many different-looking datasets can have exactly the same regression line

Anscombe's quartet

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". American Statistician. 27 (1): 17–21.

Beware of combining distinct groups into one

Combining two groups into one regression can mislead by creating a strong linear relationship.

Combining two groups into one regression can mislead by hiding a trend.

Beware of reading too much into a regression result

Don't trust regression results that you can't verify by eye

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

MY HOBBY: EXTRAPOLATING

Don't over-extrapolate

Nonlinear regression

log10_conc	pct_relaxation
-8.0	2.6
-7.5	10.5
-7.0	15.8
-6.5	21.1
-6.0	36.8
-5.5	57.9
-5.0	73.7
-4.5	89.5
-4.0	94.7
-3.5	100.0
-3.0	100.0

Frazier et al (2006) measured the degree to which the neurotransmitter norepinephrine relaxes bladder muscle in rats.

Strips of bladder muscle were exposed to various concentrations of norepinephrine, and percent muscle relaxation was measured.

The data from each rat was analyzed to determine the maximum relaxation and the concentration of norepinephrine that relaxes the muscle half that much (C50)

Example: effect of norepinephrine on muscle relaxation

log10_conc	pct_relaxation
-8.0	2.6
-7.5	10.5
-7.0	15.8
-6.5	21.1
-6.0	36.8
-5.5	57.9
-5.0	73.7
-4.5	89.5
-4.0	94.7
-3.5	100.0
-3.0	100.0

 $x: \log_{10}$ concentration (in M)

y: percent muscle relaxation

 $f(x) = \text{bottom} + \frac{\text{top} - \text{bottom}}{1 + 10^{(\log C50 - x) \cdot \text{hillSlope}}}$

		nonli	inear_regressio	n.pzfx		
Q~ Search		Та	able format:	Х	Group A	Group B
▼ Data Tables			XY	log10_conc	pct_relaxation	Title
🖽 Data 1			8	X	Y	Y
🕀 New Data Table	-	1	Title	-8.0	2.6	
▼ Info	>> -	2	Title	-7.5	10.5	
(i) Project info 1	-	3	Title	-7.0	15.8	
(+) New Info		1	Title	6.5	21.1	
Results Now Applyois	<i>}</i>	4		-0.5	21.1	
▼ G hs	>>	5	litte	-6.0	36.8	
		6	Title	-5.5	57.9	
		7	Title	-5.0	73.7	
Family	>>	8	Title	-4.5	89.5	
🛄 Data 1		9	Title	-4.0	94.7	
🗠 Data 1	-	10	Title	-3.5	100.0	
	-	11	Title	-3.0	100.0	
	-	12	Title			
	-	13	Title			
	-	14	Titlo			
	-	14				
		15	litle			

lable: Data 1	<u> </u>
pe of analysis	
Which analysis?	Analyze which data sets?
Transform, Normalize	✓ A:pct_relaxation
Transform	
Transform concentrations (X)	
Normalize	
Prune rows	
Remove baseline and column math	
Transpose X and Y	
Fraction of Total	
▼ XY analyses	
Nonlinear regression (curve fit)	When you analyze tables or graphs with
Linear regression	more than one data set, use this space
Fit spline/LOWESS	to select which data set(s) to analyze.
Smooth, differentiate or integrate curve	
Area under curve	
Deming (Model II) linear regression	
Row means with SD or SEM	
Correlation	
Interpolate a standard curve	
Column analyses	
Grouped analyses	
Contingency table analyses	
Survival analyses	Select All Deselect All

Parameters: Nonlinear Regression	
Model Method Compare Constrain Initial Values Range Output Confidence	e Diagnostics Flag
Choose an equation	
 Standard curves to interpolate Dose-response - Stimulation Dose-response - Special, X is concentration Dose-response - Special, X is log(concentration) Binding - Saturation Binding - Competitive Binding - Kinetics Enzyme kinetics - Inhibition Enzyme kinetics - Velocity as a function of substrate Exponential Lines Polynomial Sine waves Growth curves 	+• - *
Standard curves to interpolate	
Interpolate	
Interpolate unknowns from standard curve. Confidence Interval:	
	Cancel OK

	wethod Compare	Constrain	initial values	Range	Output	connuence	Diagnostics Fla
hoose	an equation						
▼ Sta	ndard curves to inte	rpolate					+
l	₋ine						
	Sigmoidal, 4PL, X is lo	g(concentratio	n)				Move Up
	Sigmoidal, 4PL, X is co	ncentration					Maus Daum
/	Asymmetric Sigmoldal	, 5PL, X IS IOG(Move Down
	Asymmetric Sigmoldal	, SPL, X IS CON	centration				
	Jyperbola (Y is concer	atration)					
	Second order polynom	ial (quadratic)					
	Third order polynomial	(cubic)					
F	Pade (1,1) approximant						
► Do	se-response - Stimul	ation					
► Do	se-response - Inhibit	ion					
► Do:	se-response - Specia	al, X is concen	tration				
► Do:	se-response - Specia	al, X is log(cor	centration)				
▶ Bin	ding - Saturation	,					
► Bin	ding - Saturation	lose, go back and	d transform vour d	ata.			
Bin -If X -This	ding - Saturation is not already the log of o equation is equivalent to	dose, go back and : log(dose) vs. r	d transform your de esponse (variable s	ata. slope)			
► Bin -If X -This	ding - Saturation is not already the log of o equation is equivalent to	dose, go back and : log(dose) vs. r	d transform your de esponse (variable s	ata. slope)			
Bin	ding - Saturation is not already the log of o equation is equivalent to	dose, go back and : log(dose) vs. r	d transform your d esponse (variable s	ata. slope)			
Bin	ding - Saturation is not already the log of o equation is equivalent to	dose, go back and : log(dose) vs. r	d transform your d esponse (variable s	ata. slope)			
Bin	ding - Saturation is not already the log of o equation is equivalent to moidal, 4PL, X is log(conce	dose, go back and : log(dose) vs. re entration)	d transform your d esponse (variable s	ata. slope)			
Bin -If X -This Sigm	ding - Saturation is not already the log of o equation is equivalent to noidal, 4PL, X is log(conce ytical derivatives	dose, go back and : log(dose) vs. r	d transform your d esponse (variable s	ata. slope)		3	Learn about this equation
Bin -If X -This Sigm Analy	ding - Saturation is not already the log of o equation is equivalent to noidal, 4PL, X is log(conce ytical derivatives	dose, go back and : log(dose) vs. r	d transform your d esponse (variable s	ata. slope)		2	Learn about this equation
Bin -If X -This Sigm Analy	ding - Saturation is not already the log of o equation is equivalent to oidal, 4PL, X is log(conce ytical derivatives ate	dose, go back and : log(dose) vs. re entration) m standard cur	d transform your de esponse (variable s	ata. slope) interval:	None	\$	Learn about this equation
Bin -If X -This Sigm Analy terpol	ding - Saturation is not already the log of o equation is equivalent to oidal, 4PL, X is log(conce ytical derivatives ate	dose, go back and : log(dose) vs. re entration) m standard cur	d transform your de esponse (variable s	ata. slope) interval:	None	\$	Learn about this equation
Bin -If X -This Sigm Analy Interpole	ding - Saturation is not already the log of o equation is equivalent to oidal, 4PL, X is log(conce ytical derivatives ate	dose, go back and : log(dose) vs. n entration) m standard cur	d transform your de esponse (variable s	ata. slope) interval:	None	¢	Learn about this equation
Bin -If X -This Sigm Analy Interpole	ding - Saturation is not already the log of o equation is equivalent to oidal, 4PL, X is log(conce ytical derivatives ate	dose, go back and : log(dose) vs. n entration) m standard cur	d transform your de esponse (variable s	ata. slope) interval:	None	¢	Learn about this equation
Bin -If X -This Sigm Analy	ding - Saturation is not already the log of o equation is equivalent to oidal, 4PL, X is log(conce ytical derivatives ate	dose, go back and : log(dose) vs. re entration)	d transform your de esponse (variable s	ata. slope) interval:	None	\$	Learn about this equation

 $y = \text{Bottom} + \frac{\text{Top} - \text{Bottom}}{1 + 10^{(\text{LogIC50} - x) \cdot \text{HillSlope}}}$

4 parameters: Bottom, Top, LogIC50, HillSlope

• • •	s r	onlinear_regression.pzfx — Edited		
Q~ Search	Т	able of results \vee		
Data Tables Data 1	>>>	Nonlin fit Table of results	A not relaxation	E
⊕ New Data Table▶ Info	>>		Y	
▼ Results	» 1	Sigmoidal, 4PL, X is log(concentration)		
Nonlin fit of Data 1	2	Best-fit values		
① New Analysis	3	Тор	102.6	
V Graphs	» 4	Bottom	3.597	
(+) New Graph	5	LogIC50	-5.597	
0	6	HillSlope	0.6904	
Family	» 7	IC50	2.531e-006	
Data 1	8	Span	98.97	
🗠 Data 1	9	95% CI (profile likelihood)		
	10	Тор	98.35 to 107.7	
	11	Bottom	-2.417 to 8.317	
	12	LogIC50	-5.721 to -5.477	
	13	HillSlope	0.5594 to 0.8410	
	14	IC50	1.901e-006 to 3.338e-006	
		Nonlin fit c	of Data 1	\gg

 $y = \text{Bottom} + \frac{\text{Top} - \text{Bottom}}{1 + 10^{(\text{LogIC50} - x) \cdot \text{HillSlope}}}$

4 parameters: Bottom, Top, LogIC50, HillSlope

Multiple linear regression and logistic regression

<u>Multiple linear regression</u> (often just called "linear regression") is used to model data where each data point (\vec{x}_i, y_i) consist of an independent variable $\vec{x}_i = (x_{i1}, x_{i2}, ..., x_{iD})$, which is a *D*-dimensional vector, and a dependent variable y_i , which is a single number. Often the entries of the vector \vec{x}_i are called "<u>covariates</u>".

The key assumption is that each dependent variable y_i is related to the corresponding independent variables via

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_D x_{iD} + \epsilon_i$$

where the residual ϵ_i is due to random Gaussian noise.

The covariants that define \vec{x} are often a mixture of continuous and binary variables.

Logistic regression is used to model probabilities that depend on multiple covariates

<u>Logistic regression</u> is used to model data where each data point (\vec{x}_i, y_i) consists of a vector $\vec{x}_i = (x_{i1}, x_{i2}, \dots, x_{iD})$ that represents *D* covariants, and one dependent variable y_i that is **binary**.

The key assumption is that the log odds of y_i is a linear function of \vec{x}_i :

$$\log \text{Odds}_{i} = \log \left[\frac{p(y_{i} = 1 | \vec{x}_{i})}{p(y_{i} = 0 | \vec{x}_{i})} \right] = \beta_{0} + \beta_{1} x_{i1} + \beta_{2} x_{i2} + \dots + \beta_{D} x_{iD}$$

Note that there is no need for a "residual" contribution since the model is inherently probabilistic.

Again, the covariants that define \vec{x} are often a mixture of continuous and binary variables.

Welcome to GraphPad Prism

• • •

NEW TABLE & GRAPH

XY

Column

Grouped

Contingency

Survival

Parts of Whole

Multiple variables

Nested

EXISTING FILE

Open a File LabArchives Clone a Graph Graph Portfolio

Start with sample data to follow a tutorial

Select a tutorial data set:

Aultiple logistic regression

son regression

Cancel

Create

Prism Tips

Survival analysis

Uppercase T indicates the time of an individual's death. This is a random variable that changes from individual to individual. Alternatively, T can be the time of some other event an individual can experience once and only once. Not all individuals under study need to experience this event.

Lowercase *t* denotes a time value that we wish to inquire about; it is not specific to any individual.

The survival function S(t) is the probability of survival to time t, i.e.

S(t) = p(T > t)

Here are some properties of the survival function:

- 1. S(0) = 1 (by convention)
- 2. $0 \le S(t) \le 1$ at all times *t*
- 3. S(t) is a non-increasing function of t

The hazard function h(t) is the probability of death per unit time (i.e. death rate) at time t, given that a subject has already survived up until time t.

The hazard function and the survival function are related to each other via

$$S(t) = \exp\left(-\int_0^t dt' h(t')\right) \quad \text{and} \quad h(t) = -\frac{d}{dt}\log S(t).$$

The <u>cumulative hazard function</u> H(t) is the integral of the hazard function:

$$H(t) = \int_0^t dt' \ h(t'),$$

which is related to the survival function via $S(t) = e^{-H(t)}$.

The survival function is usually the primary thing we are interested in estimating from data. Suppose we have *n* individuals who are all alive at time t = 0. Further assume that we observe all death events that do occur. We can then estimate S(t) quite simply as the fraction of these individuals who remain alive at time *t*.

$$\hat{S}(t) = \frac{n(t)}{n(0)}$$

where n(t) is the number of subjects alive at time t.

Survival data is "right-censored" when we know that an individual i survived up to time T_i , but after that we loose track of that individual.

Censoring is usually indicated by an event flag E_i that is 1 if the event is observed or 0 if the event is censored.

Censoring can occur for many different reasons.

- 1. Subjects enroll in a clinical trial on a rolling basis, and survival time is computed from the date of enrollment. When the trial ends, the subjects how still survive will have survived for different periods of time.
- 2. Subjects in a clinical trial leave because they don't want to participate anymore, they require protocol-breaking treatment, or they are lost to follow-up.
- 3. In an animal study, animals become available for experimentation at different times.
- 4. An animal in a study is subject to some unexpected mishap (lost, etc.)

Do not throw away censored data! This will invalidate your entire analysis.

Let T_1, T_2, \ldots, T_K , be the times, in increasing order at which individuals either die or are censored. We allow for multiple individuals dying and/or being censored at the same time.

Let n_i denote the number of individuals <u>at risk</u> at time T_i .

Let d_i denote the number of individuals that actually die at time T_i .

The Kaplan-Meier estimate $\hat{S}(t)$ for the survival curve is given by:

$$\hat{S}(t) = \prod_{i: T_i < t} \frac{n_i - d_i}{n_i}.$$

The <u>log-rank</u> test is (also called the <u>Mantel-Cox</u> test) is the standard test used to compare survival curves for two distinct groups

Null hypothesis: the two populations are governed by the same survival curve and hazard rate

How it works: computes a summary statistic that quantifies how evenly distributed deaths are across the populations in question. Under the null hypothesis, this statistic approximately follows a χ^2 distribution with 1 degree of freedom.

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Home > Search Results > Study Record Detail

Save this study

Lymph Node Removal in Treating Women Who Have Stage I or Stage IIA Breast Cancer

The safety and scientific validity of this study is the responsibility of
 the study sponsor and investigators. Listing a study does not mean it
 has been evaluated by the U.S. Federal Government. Read our
 disclaimer for details.

ClinicalTrials.gov Identifier: NCT00003855

Recruitment Status ①: Completed First Posted ①: January 27, 2003 Last Update Posted ①: April 29, 2020

Go to

 \mathbf{T}

Study Description

Brief Summary:

RATIONALE: Surgery to remove lymph nodes in the armpit may remove cancer cells that have spread from tumors in the breast.

PURPOSE: Randomized phase III trial to determine the effectiveness of removing lymph nodes in the armpit in treating women who have stage I or stage IIA breast cancer.

Condition or disease 0	Intervention/treatment 0	Phase 0
Breast Cancer	Procedure: axillary lymph node dissection	Phase 3
	Radiation: whole breast irradiation	

Detailed Description:

OBJECTIVES:

Primary objectives:

Long term: To assess whether overall survival for patients randomized to Arm 2 (no immediate ALND) is essentially equivalent to (or better than) than that for patients assigned to Arm 1 (completion ALND).

Short term: To quantify and compare the surgical morbidities associated with SLND plus ALND versus SLND alone.

OUTLINE: This is a randomized study. After segmental mastectomy and sentinel lymph node dissection, patients are stratified according to age (50 and under vs over 50), estrogen receptor status (positive vs negative), and tumor size (no greater than 1 cm vs greater than 1 cm but no greater than 2 cm vs greater than 2 cm). Patients are randomized to one of two treatment arms.

• • •

XY

Column

Grouped

Survival

Nested

EXISTING FILE

Open a File

LabArchives

Clone a Graph

Graph Portfolio

Contingency

Parts of Whole

Multiple variables

Welcome to GraphPad Prism

Survival tables: Each row tabulates the survival or censored time of a subject

Prism Tips

Ox Seerek	1			×	Group	Group P	Group C	Group D	Group E	Group E	Group
Q* Search			#	~	Group A	Стопр в	Gloup C	Group D	Group E	Group F	Group G
Data lables	>>			years	No ALND	ALND	Title	Title	Title	Title	Title
New Data Table			8	X	Y	Y	Y	Y	Y	Y	Y
▼ Info	>>	420	Title	5.032169747	0						
(i) Project info 1		421	Title	9.314168378	0						
⊕ New Info		422	Title	10.581793290	0						
Results	>>	423	Title	3.074606434	0						
New Analysis		424	Title	6.926762491	0						
Graph	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	425	Title	8.971937029	0						
v L	>>	426	Title	5.097878166	0						
New Layout		427	Title	3.978097194	1						
		428	Title	6.187542779	0						
		429	Title	4 739219713	0						
		430	Title	4 550308008	0						
		430	Title	6 157426420	0						
		431	Title	0.137420420	0						
		432	Title	0.000000000	0						
		433	Title	5.171800137	0						
		434	Title	7.507186858	0						
0		435	Title	5.776865161	0						
Family	>>	436	Title	6.362765229	0						
🚍 Data 1		437	Title	7.096509240		0					
		438	Title	6.628336756		0					
		439	Title	6.568104038		0					
		440	Title	6.592744695		0					
		441	Title	1.927446954		1					
		442	Title	7.126625599		0					
		443	Title	4.427104723		0					
		444	Title	3,329226557		1					
		445	Title	4 824093087							
		446	Title	8 402813142		0					
		440	Title	6 224425249		0					
		447	Title	0.324435318		0					
		448	TITIE	4.854209446		0					
		449	Title	5.475701574		0					
		450	Title	8.399726215		0					
		451	Title	7.693360712		0					
		452	Title	8.432580424		0					
		453	Title	6.379192334		1					

(data curtsey of Tobias Janowitz)

Create Nev	v Analysis
ata to analyze	
Table: Date 1	
Table: Data T	
ype of analysis	
Which analysis?	Analyze which data sets?
▼ Transform, Normalize	A:No ALND
Transform	S B:ALND
Transform concentrations (X)	
Normalize	
Prune rows	
Remove baseline and column math	
Transpose X and Y	
Fraction of Total	
▶ XY analyses	
Column analyses	
Grouped analyses	
Contingency table analyses	
Survival analyses	
Survival curve	
Parts of whole analyses Multiple variable analyses	
Nested analyses	
Generate curve	
▶ Simulate data	
▶ Recently used	
	Select All Deselect All
	Cancel

nnut	
The X values are time. The X	(values are coded as follows:
Death/Event:	
Cancered subject: 0	
Note: All other X values are igno	red
wee an other r values are igno	
Coloulations to compare two	
V Lograph (Mantel-Cox to	groups:
Gehan-Breslow-Wilcov	on test (extra weight for early time points)
Calculations to compare the	on cost (oxtra weight for early time points)
	Match SPSS and SAS (recommended)
I ogrank test for trend	Match SPSS and SAS (recommended)
Geban-Breslow-Wilcov	on test (extra weight for early time points)
• Genan-Dresiow-Wicox	on test (extra weight for early time points)
Tabulata probability of	unival (Parcent)
Fuerces freeties survival are	
Express fraction survival err	or bars as:
O 95%CL Asymmetrics	(more accurate: recommended)
None	
Show censored subjects	on graph.
Jutnut	
Show this many significant d	ligits (for everything except P values): 4
P Value Style: GP: 0.1234	ins), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.000 ᅌ N= 6 🗘
Use these settings as the c	lefault for future survival analyses
?	Cancel

Q- Search I # t risk × I Curve comparison × I > I > Data Tables Survival O Project info 1 0 O New Data Table 1 New Data Table 1 O Project info 1 1 O New Info 1 P Results 1 O New Analysis 1 O New Carph 1 O Rehan-Breslow-Wilcoxon test 1 I O Chi square 0.5410 I O Chi square 0.5410 I O Chi square 0.4620 I O Chi square 0.4620 I O I O I O I O I	Image: selection of the selection
Data Tables >> Survival	Image: second
Survival	Image: select
• New Data Table Curve companison • New Info • Comparison of Survival Curves • New Info 2 • Results 2 • New Analysis 2 • New Analysis 1 • New Carph 1 • New Carph 7 • New Layout 8 • New Layout 8 • New Layout 8 • Neu Layout • O • Neu Layout	Image: state
Info > Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: New Info Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Results Image: Comparison of Survival Curves Image: Survival of Data 1 Image: Comparison of Survival of Comparison of Survival for Survival of Data 1 Image: Comparison of Survival of Comparison of Survival Curves Image: Comparison of Survival of Comparison of Survival for Survival of P value summary Image: Comparison of Survival Curves Sig different for Survival curves Sig different for Survival for Survival for Survival for Survival Curves Sig different for Survival for	
1 Comparison of Survival Curves Image: Comparison of Survival Curves Image: New Info 2 Results Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival of Data 1 Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival of Data 1 Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival of Data 1 Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival of Data 1 Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival of Data 1 Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival curves Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival curves Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival curves Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival curves Image: Comparison of Survival Curves Image: Comparison of Survival Curves Image: Comparison of Survival curves Image: Comparison of Sur	
• New Into 2 • Results 2 • Survival of Data 1 4 • New Analysis 4 • Graphs 5 • Survival proportions: Survival of • New Graph 5 • New Graph 6 • New Layout 6 • New Layout 8 • New Layout 9 • New Layout 9 • New Layout 1 • O Gehan-Breslow-Wilcoxon test 1 Chi square 0.5410 1 Chi square 1 Are the survival curves sig differe 1 Median survival 1 Median survival	
Image: Survival of Data 1 Image: Log-rank (Mantel-Cox) test Image: Comparison of	
Image: Survival propertions: Survival of I of	
▼ Graphs 5 df 1	
Survival proportions: Survival of New Graph P value P value summary Are the survival curves sig differer No Gehan-Breslow-Wilcoxon test Chi square O.5410 Chi square O.4620 Chi square P value summary Are the survival curves sig differer No Are the survival curves sig differer No Median survival Median survival No Chi square Chi square<	
• New Graph 7 P value summary ns 1 • New Layout 8 Are the survival curves sig differer No 1 • New Layout 9 6 6 1 1 • O Gehan-Breslow-Wilcoxon test 1 1 1 1 • O Gehan-Breslow-Wilcoxon test 0.5410 1 1 1 • O Gehan-Breslow-Wilcoxon test 0.5410 1 1 1 • O P value 0.4620 1 1 1 1 • P value summary ns 1	
 Layouts New Layout New Layout Are the survival curves sig differer Gehan-Breslow-Wilcoxon test Chi square O.5410 Chi square O.4620 <li< td=""><td></td></li<>	
• New Layout 8 Are the survival curves sig differer No 9 0 Gehan-Breslow-Wilcoxon test 0 10 Gehan-Breslow-Wilcoxon test 0.5410 11 Chi square 0.5410 2 df 1 3 P value 0.4620 4 P value summary ns 13 Are the survival curves sig differer No	
P value 0.4620 P value summary ns P value summary ns Are the survival curves sig differe No Family 16 Median survival Image: Survival	
0Gehan-Breslow-Wilcoxon test0.54101Chi square0.54102df13P value0.46204P value summaryns14Are the survival curves sig differeNoFamily161Survival17Median survival	
Image: space s	
Image: space s	
3 P value 0.4620 4 P value summary ns 14 P value summary ns 15 Are the survival curves sig differer No Family 16 11 Image: Survival curves 17 Median survival	
Image: second	
Family 16 Image: Survival control of the sur	
Family >>> 16 Data 1 Survival Curves sig differen No 16 17 Median survival	
Image: Survival 16 Image: Survival 17 Median survival	
E Survival 17 Median survival	
V Survival proportions: Survival of I 18 No ALND Undefined	
19 ALND Undefined	
20	
21 Hazard Ratio (Mantel-Haenszel) A/B B/A	
22 Ratio (and its reciprocal) 0.7900 1.266	
22 Natio (and its recipiccal) 0.7500 1.200 23 0.5% Clief ratio 0.5273 to 1.184 0.8448 to 1.807	
24	
25 Hazard Ratio (logrank) A/B B/A	
26 Ratio (and its reciprocal) 0.7894 1.267	
27 95% CI of ratio 0.5269 to 1.183 0.8454 to 1.898	
28	
29	
30	
21	
32	
Image:	

Suppose that each individual *i* has, in addition to an event time t_i and event flag, has a set of *D* covariants $x_{i1}, x_{i2}, \ldots, x_{iD}$, which can be either real numbers or binary.

The Cox proportional hazards model assumes that subjects are governed by a hazards function that has the following form.

$$h_i(t) = h_0(t) \times \exp \left[\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_D x_{iD}\right]$$

Each coefficient β_j is the "effect size" for the corresponding covariate x_{j} . If the value for β_j is significantly different than 0, it means that the covariate x_{j} effects survival.

lifelines.datasets.load_rossi(**kwargs)

This data set is originally from Rossi et al. (1980), and is used as an example in Allison (1995). The data pertain to 432 convicts who were released from Maryland state prisons in the 1970s and who were followed up for one year after release. Half the released convicts were assigned at random to an experimental treatment in which they were given financial aid; half did not receive aid.:

Size: (432,9)	
Example:	
week	20
arrest	1
fin	0
age	27
race	1
wexp	0
mar	0
paro	1
prio	3

References

Rossi, P.H., R.A. Berk, and K.J. Lenihan (1980). Money, Work, and Crime: Some Experimental Results. New York: Academic Press. John Fox, Marilia Sa Carvalho (2012). The RcmdrPlugin.survival Package: Extending the R Commander Interface to Survival Analysis. Journal of Statistical Software, 49(7), 1-32.

https://lifelines.readthedocs.io/en/latest/lifelines.datasets.html#lifelines.datasets.load_rossi

Example: Rossi recidivism dataset

A data frame with 432 observations on the following 62 variables.

week

week of first arrest after release or censoring; all censored observations are censored at 52 weeks.

arrest

1 if arrested, 0 if not arrested.

fin

financial aid: no yes.

age

in years at time of release.

race

black Or other.

wexp

full-time work experience before incarceration: no or yes.

mar

marital status at time of release: married or not married.

paro

released on parole? no or yes.

prio

number of convictions prior to current incarceration.

educ

level of education: 2 = 6th grade or less; 3 = 7th to 9th grade; 4 = 10th to 11th grade; 5 = 12th grade; 6 =some college.

Example: Rossi recidivism dataset

- 1 **#** Load and preview Rossi dataset
- 2 **from** lifelines.datasets **import** load_rossi
- 3 rossi_df = load_rossi()
- 4 rossi_df.head()

	week	arrest	fin	age	race	wexp	mar	paro	prio
0	20	1	0	27	1	0	0	1	3
1	17	1	0	18	1	0	0	1	8
2	25	1	0	19	0	1	0	1	13
3	52	0	1	23	1	1	1	1	1
4	52	0	0	19	0	1	0	1	3

week: survival time
arrest: 1 if arrested (event), 0 if not arrested (censored)

The results of Cox Regression is a statement about the effect size and significance of each variable

		exp(coef)	exp(coef)	lower 95%	exp(coef)	upper 95%
	fin	0.68		0.47		1.00
	age	0.94		0.90		0.99
effect size	race	1.37		0.75		2.50
(hazard)	wexp	0.86		0.57		1.30
	mar	0.65		0.31		1.37
	paro	0.92		0.63		1.35
	prio	1.10		1.04		1.16

	Z	р	-log2(p)
fin	-1.98	0.05	4.40
age	-2.61	0.01	6.79
race	1.02	0.31	1.70
wexp	-0.71	0.48	1.06
mar	-1.14	0.26	1.97
paro	-0.43	0.66	0.59
prio	3.19	<0.005	9.48
	fin age race wexp mar paro prio	z fin -1.98 age -2.61 race 1.02 wexp -0.71 mar -1.14 paro -0.43 prio 3.19	z p fin -1.98 0.05 age -2.61 0.01 race 1.02 0.31 wexp -0.71 0.48 mar -1.14 0.26 paro -0.43 0.66 prio 3.19 <0.005

Log-likelihood ratio test = 33.27 on 7 df, -log2(p)=15.37

The likelihood ratio test is an extremely general way of comparing two models. It is an approximate test, though, valid only in the large data regime.

Likelihood ratio test uses a statistic given by:

$$\chi^2 = 2 \log \left(\frac{\text{Likelihood}_{\text{alt}}}{\text{Likelihood}_{\text{null}}} \right)$$

Under the null hypothesis, χ^2 follows a chi square distribution where the number of degrees of freedom is:

DOF = (# alt model parameters) - (# null model parameters)

It tests the necessity of all parameters; it does not say whether individual parameters are required.

10:00a - 12:00p. Finished right on time, though rather rushed at the end.